188 lines
6.3 KiB
Markdown
188 lines
6.3 KiB
Markdown
---
|
||
license: mit
|
||
language:
|
||
- multilingual
|
||
tags:
|
||
- nlp
|
||
base_model: microsoft/Phi-3.5-mini-instruct
|
||
pipeline_tag: text-generation
|
||
inference: true
|
||
---
|
||
|
||
# NuExtract-v1.5 by NuMind 🔥
|
||
|
||
NuExtract-v1.5 is a fine-tuning of [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian).
|
||
To use the model, provide an input text and a JSON template describing the information you need to extract.
|
||
|
||
Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.
|
||
|
||
Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o).
|
||
|
||
Try it here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5)
|
||
|
||
We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: [NuExtract-tiny-v1.5](https://huggingface.co/numind/NuExtract-tiny-v1.5)
|
||
|
||
⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to pure extraction tasks.
|
||
|
||
## Benchmark
|
||
|
||
Zero-shot performance (English):
|
||
|
||
<p align="left">
|
||
<img src="english_bench.png" style="height: auto;">
|
||
</p>
|
||
|
||
Zero-shot performance (Multilingual):
|
||
|
||
<p align="left">
|
||
<img src="multilingual_bench.png" style="height: auto;">
|
||
</p>
|
||
|
||
Long documents (8-10k tokens):
|
||
|
||
<p align="left">
|
||
<img src="8-10_long_context.png" style="height: auto;">
|
||
</p>
|
||
|
||
Very long documents (10-20k tokens):
|
||
|
||
<p align="left">
|
||
<img src="10-20_long_context.png" style="height: auto;">
|
||
</p>
|
||
|
||
Few-shot fine-tuning:
|
||
|
||
<p align="left">
|
||
<img src="fewshot_bench.png" style="height: auto;">
|
||
</p>
|
||
|
||
## Usage
|
||
|
||
To use the model:
|
||
|
||
```python
|
||
import json
|
||
import torch
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
|
||
template = json.dumps(json.loads(template), indent=4)
|
||
prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
|
||
|
||
outputs = []
|
||
with torch.no_grad():
|
||
for i in range(0, len(prompts), batch_size):
|
||
batch_prompts = prompts[i:i+batch_size]
|
||
batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)
|
||
|
||
pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
|
||
outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
||
|
||
return [output.split("<|output|>")[1] for output in outputs]
|
||
|
||
model_name = "numind/NuExtract-v1.5"
|
||
device = "cuda"
|
||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||
|
||
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
|
||
superior performance and efficiency. Mistral 7B outperforms the best open 13B
|
||
model (Llama 2) across all evaluated benchmarks, and the best released 34B
|
||
model (Llama 1) in reasoning, mathematics, and code generation. Our model
|
||
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
|
||
window attention (SWA) to effectively handle sequences of arbitrary length with a
|
||
reduced inference cost. We also provide a model fine-tuned to follow instructions,
|
||
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
|
||
automated benchmarks. Our models are released under the Apache 2.0 license.
|
||
Code: <https://github.com/mistralai/mistral-src>
|
||
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""
|
||
|
||
template = """{
|
||
"Model": {
|
||
"Name": "",
|
||
"Number of parameters": "",
|
||
"Number of max token": "",
|
||
"Architecture": []
|
||
},
|
||
"Usage": {
|
||
"Use case": [],
|
||
"Licence": ""
|
||
}
|
||
}"""
|
||
|
||
prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
|
||
print(prediction)
|
||
|
||
```
|
||
|
||
Sliding window prompting:
|
||
|
||
```python
|
||
import json
|
||
|
||
MAX_INPUT_SIZE = 20_000
|
||
MAX_NEW_TOKENS = 6000
|
||
|
||
def clean_json_text(text):
|
||
text = text.strip()
|
||
text = text.replace("\#", "#").replace("\&", "&")
|
||
return text
|
||
|
||
def predict_chunk(text, template, current, model, tokenizer):
|
||
current = clean_json_text(current)
|
||
|
||
input_llm = f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{"
|
||
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
|
||
output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)
|
||
|
||
return clean_json_text(output.split("<|output|>")[1])
|
||
|
||
def split_document(document, window_size, overlap):
|
||
tokens = tokenizer.tokenize(document)
|
||
print(f"\tLength of document: {len(tokens)} tokens")
|
||
|
||
chunks = []
|
||
if len(tokens) > window_size:
|
||
for i in range(0, len(tokens), window_size-overlap):
|
||
print(f"\t{i} to {i + len(tokens[i:i + window_size])}")
|
||
chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size])
|
||
chunks.append(chunk)
|
||
|
||
if i + len(tokens[i:i + window_size]) >= len(tokens):
|
||
break
|
||
else:
|
||
chunks.append(document)
|
||
print(f"\tSplit into {len(chunks)} chunks")
|
||
|
||
return chunks
|
||
|
||
def handle_broken_output(pred, prev):
|
||
try:
|
||
if all([(v in ["", []]) for v in json.loads(pred).values()]):
|
||
# if empty json, return previous
|
||
pred = prev
|
||
except:
|
||
# if broken json, return previous
|
||
pred = prev
|
||
|
||
return pred
|
||
|
||
def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128):
|
||
# split text into chunks of n tokens
|
||
tokens = tokenizer.tokenize(text)
|
||
chunks = split_document(text, window_size, overlap)
|
||
|
||
# iterate over text chunks
|
||
prev = template
|
||
for i, chunk in enumerate(chunks):
|
||
print(f"Processing chunk {i}...")
|
||
pred = predict_chunk(chunk, template, prev, model, tokenizer)
|
||
|
||
# handle broken output
|
||
pred = handle_broken_output(pred, prev)
|
||
|
||
# iterate
|
||
prev = pred
|
||
|
||
return pred
|
||
``` |