first commit
This commit is contained in:
parent
aa3d64d0bf
commit
d7dc046b95
|
@ -0,0 +1,202 @@
|
|||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2024 Alibaba Cloud
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
116
README.md
116
README.md
|
@ -1,3 +1,115 @@
|
|||
# Qwen2.5-Math-7B-Instruct_a13571055665541120819061
|
||||
---
|
||||
base_model: Qwen/Qwen2.5-Math-7B
|
||||
language:
|
||||
- en
|
||||
pipeline_tag: text-generation
|
||||
tags:
|
||||
- chat
|
||||
library_name: transformers
|
||||
license: apache-2.0
|
||||
license_link: https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct/blob/main/LICENSE
|
||||
---
|
||||
|
||||
Qwen2.5-Math-7B-Instruct
|
||||
|
||||
# Qwen2.5-Math-7B-Instruct
|
||||
|
||||
> [!Warning]
|
||||
> <div align="center">
|
||||
> <b>
|
||||
> 🚨 Qwen2.5-Math mainly supports solving English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks.
|
||||
> </b>
|
||||
> </div>
|
||||
|
||||
## Introduction
|
||||
|
||||
In August 2024, we released the first series of mathematical LLMs - [Qwen2-Math](https://qwenlm.github.io/blog/qwen2-math/) - of our Qwen family. A month later, we have upgraded it and open-sourced **Qwen2.5-Math** series, including base models **Qwen2.5-Math-1.5B/7B/72B**, instruction-tuned models **Qwen2.5-Math-1.5B/7B/72B-Instruct**, and mathematical reward model **Qwen2.5-Math-RM-72B**.
|
||||
|
||||
Unlike Qwen2-Math series which only supports using Chain-of-Thught (CoT) to solve English math problems, Qwen2.5-Math series is expanded to support using both CoT and Tool-integrated Reasoning (TIR) to solve math problems in both Chinese and English. The Qwen2.5-Math series models have achieved significant performance improvements compared to the Qwen2-Math series models on the Chinese and English mathematics benchmarks with CoT.
|
||||
|
||||

|
||||
|
||||
While CoT plays a vital role in enhancing the reasoning capabilities of LLMs, it faces challenges in achieving computational accuracy and handling complex mathematical or algorithmic reasoning tasks, such as finding the roots of a quadratic equation or computing the eigenvalues of a matrix. TIR can further improve the model's proficiency in precise computation, symbolic manipulation, and algorithmic manipulation. Qwen2.5-Math-1.5B/7B/72B-Instruct achieve 79.7, 85.3, and 87.8 respectively on the MATH benchmark using TIR.
|
||||
|
||||
## Model Details
|
||||
|
||||
|
||||
For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2.5-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2.5-Math).
|
||||
|
||||
|
||||
## Requirements
|
||||
* `transformers>=4.37.0` for Qwen2.5-Math models. The latest version is recommended.
|
||||
|
||||
> [!Warning]
|
||||
> <div align="center">
|
||||
> <b>
|
||||
> 🚨 This is a must because <code>transformers</code> integrated Qwen2 codes since <code>4.37.0</code>.
|
||||
> </b>
|
||||
> </div>
|
||||
|
||||
For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
|
||||
|
||||
## Quick Start
|
||||
|
||||
> [!Important]
|
||||
>
|
||||
> **Qwen2.5-Math-7B-Instruct** is an instruction model for chatting;
|
||||
>
|
||||
> **Qwen2.5-Math-7B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning.
|
||||
>
|
||||
|
||||
### 🤗 Hugging Face Transformers
|
||||
|
||||
Qwen2.5-Math can be deployed and infered in the same way as [Qwen2.5](https://github.com/QwenLM/Qwen2.5). Here we show a code snippet to show you how to use the chat model with `transformers`:
|
||||
|
||||
```python
|
||||
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "qwen/Qwen2.5-Math-7B-Instruct"
|
||||
device = "cuda" # the device to load the model onto
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype="auto",
|
||||
device_map="auto"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$."
|
||||
messages = [
|
||||
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
||||
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=512
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||||
]
|
||||
|
||||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
```
|
||||
|
||||
### 🤖 ModelScope
|
||||
We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints.
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
If you find our work helpful, feel free to give us a citation.
|
||||
|
||||
```
|
||||
@article{yang2024qwen2,
|
||||
title={Qwen2 technical report},
|
||||
author={Yang, An and Yang, Baosong and Hui, Binyuan and Zheng, Bo and Yu, Bowen and Zhou, Chang and Li, Chengpeng and Li, Chengyuan and Liu, Dayiheng and Huang, Fei and others},
|
||||
journal={arXiv preprint arXiv:2407.10671},
|
||||
year={2024}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,27 @@
|
|||
{
|
||||
"architectures": [
|
||||
"Qwen2ForCausalLM"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 151643,
|
||||
"eos_token_id": 151645,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 3584,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 18944,
|
||||
"max_position_embeddings": 4096,
|
||||
"max_window_layers": 28,
|
||||
"model_type": "qwen2",
|
||||
"num_attention_heads": 28,
|
||||
"num_hidden_layers": 28,
|
||||
"num_key_value_heads": 4,
|
||||
"rms_norm_eps": 1e-06,
|
||||
"rope_theta": 10000.0,
|
||||
"sliding_window": 4096,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": "4.43.1",
|
||||
"use_cache": true,
|
||||
"use_sliding_window": false,
|
||||
"vocab_size": 152064
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
{}
|
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"bos_token_id": 151643,
|
||||
"pad_token_id": 151643,
|
||||
"do_sample": false,
|
||||
"eos_token_id": [
|
||||
151645,
|
||||
151643
|
||||
],
|
||||
"transformers_version": "4.37.0"
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,346 @@
|
|||
{
|
||||
"metadata": {
|
||||
"total_size": 15231233024
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.weight": "model-00004-of-00004.safetensors",
|
||||
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
||||
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
||||
"model.norm.weight": "model-00004-of-00004.safetensors"
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,207 @@
|
|||
{
|
||||
"add_bos_token": false,
|
||||
"add_prefix_space": false,
|
||||
"added_tokens_decoder": {
|
||||
"151643": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151644": {
|
||||
"content": "<|im_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151645": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151646": {
|
||||
"content": "<|object_ref_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151647": {
|
||||
"content": "<|object_ref_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151648": {
|
||||
"content": "<|box_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151649": {
|
||||
"content": "<|box_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151650": {
|
||||
"content": "<|quad_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151651": {
|
||||
"content": "<|quad_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151652": {
|
||||
"content": "<|vision_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151653": {
|
||||
"content": "<|vision_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151654": {
|
||||
"content": "<|vision_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151655": {
|
||||
"content": "<|image_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151656": {
|
||||
"content": "<|video_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151657": {
|
||||
"content": "<tool_call>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151658": {
|
||||
"content": "</tool_call>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151659": {
|
||||
"content": "<|fim_prefix|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151660": {
|
||||
"content": "<|fim_middle|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151661": {
|
||||
"content": "<|fim_suffix|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151662": {
|
||||
"content": "<|fim_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151663": {
|
||||
"content": "<|repo_name|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151664": {
|
||||
"content": "<|file_sep|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
}
|
||||
},
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<|object_ref_start|>",
|
||||
"<|object_ref_end|>",
|
||||
"<|box_start|>",
|
||||
"<|box_end|>",
|
||||
"<|quad_start|>",
|
||||
"<|quad_end|>",
|
||||
"<|vision_start|>",
|
||||
"<|vision_end|>",
|
||||
"<|vision_pad|>",
|
||||
"<|image_pad|>",
|
||||
"<|video_pad|>"
|
||||
],
|
||||
"bos_token": null,
|
||||
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
||||
"clean_up_tokenization_spaces": false,
|
||||
"eos_token": "<|im_end|>",
|
||||
"errors": "replace",
|
||||
"model_max_length": 131072,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"split_special_tokens": false,
|
||||
"tokenizer_class": "Qwen2Tokenizer",
|
||||
"unk_token": null
|
||||
}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue