Sa2VA-1B/README.md

7.2 KiB

license pipeline_tag library_name base_model base_model_relation language tags
mit image-text-to-text transformers
OpenGVLab/InternVL2-1B
OpenGVLab/InternVL2_5-8B
OpenGVLab/InternVL2_5-4B
OpenGVLab/InternViT-300M-448px-V2_5
internlm/internlm2_5-7b-chat
Qwen/Qwen2-0.5B-Instruct
Qwen/Qwen2.5-3B-Instruct
merge
multilingual
Sa2VA
custom_code

Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos

[📂 GitHub] [📜 Sa2VA paper] [🚀 Quick Start]

Introduction

Sa2VA is an MLLM capable of question answering, visual prompt understanding, and dense object segmentation at both image and video levels. It achieves comparable performance to SOTA MLLMs Qwen2-VL and InternVL2.5 on question-answering benchmarks. Additionally, Sa2VA possesses the visual prompt understanding and dense object segmentation capabilities that SOTA MLLMs Qwen2-VL and InternVL2.5 lack. Sa2VA achieves SOTA performance on both image and video grounding and segmentation benchmarks.

Sa2VA Family

We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.

Model Name Base MLLM Language Part HF Link
Sa2VA-1B InternVL2.0-1B Qwen2-0.5B-Instruct 🤗 link
Sa2VA-4B InternVL2.5-4B Qwen2.5-3B-Instruct 🤗 link
Sa2VA-8B InternVL2.5-8B internlm2_5-7b-chat 🤗 link

Sa2VA Performance

Model Name MMBench MME RefCOCO RefCOCO+ RefCOCOg MeVIS DAVIS ReVOS
Sa2VA-1B 1381/405 68.3 77.4 69.9 72.3 50.8 72.3 47.6
Sa2VA-4B 1536/530 77.3 78.9 71.7 74.1 52.1 73.8 53.2
Sa2VA-8B 1617/511 81.6 81.6 76.2 78.7 57.0 75.2 57.6

Quick Start

We provide an example code to run Sa2VA using transformers.

import torch
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import numpy as np
import os

# load the model and tokenizer
path = "ByteDance/Sa2VA-4B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# for image chat
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Please describe the image."
image = Image.open(image_path).convert('RGB')
input_dict = {
    'image': image,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
    }
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer

# for image chat with segmentation output
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
image = Image.open(image_path).convert('RGB')
input_dict = {
    'image': image,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
    }
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
masks = return_dict['prediction_masks']  # segmentation masks, list(np.array(1, h, w), ...)
    
# for chat with visual prompt (mask format) input
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Can you provide me with a detailed description of the region in the picture marked by region1."
image = Image.open(image_path).convert('RGB')
input_dict = {
    'image': image,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': mask_prompts,
    'tokenizer': tokenizer,
    }
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer

# for video chat
video_folder = "/PATH/TO/VIDEO_FOLDER"
images_paths = os.listdir(video_folder)
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
if len(images_paths) > 5:  # uniformly sample 5 frames
    step = (len(images_paths) - 1) // (5 - 1)
    images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
text_prompts = "<image>Please describe the video."
input_dict = {
    'video': images_paths,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer


# for video chat with segmentation mask output
video_folder = "/PATH/TO/VIDEO_FOLDER"
images_paths = os.listdir(video_folder)
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
text_prompts = "<image>Please segment the person."
input_dict = {
    'video': images_paths,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
masks = return_dict['prediction_masks']  # segmentation masks, list(np.array(n_frames, h, w), ...)

Citation

If you find this project useful in your research, please consider citing:

@article{sa2va,
  title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos},
  author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong Huang and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan},
  journal={arXiv preprint},
  year={2025}
}