chatglm2-6b_a13446910433030.../README.md

6.6 KiB
Raw Permalink Blame History

language tags tasks studios widgets
zh
en
glm
chatglm
thudm
chat
AI-ModelScope/ChatGLM6B-unofficial
task version inputs examples inferencespec
chat 1
type name title validator max_words
text text 输入文字 128
type name
text-list history
name title inputs
1 示例1
name data
text 你好
name data
text
cpu memory gpu gpu_memory
4 24000 1 16000

ChatGLM2-6B

💻 Github Repo🐦 Twitter📃 [GLM@ACL 22] [GitHub]📃 [GLM-130B@ICLR 23] [GitHub]

👋 Join our Slack and WeChat

介绍

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示相比于初代模型ChatGLM2-6B 在 MMLU+23%、CEval+33%、GSM8K+571% 、BBH+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
  2. 更长的上下文:基于 FlashAttention 技术我们将基座模型的上下文长度Context Length由 ChatGLM-6B 的 2K 扩展到了 32K并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
  3. 更高效的推理:基于 Multi-Query Attention 技术ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%INT4 量化下6G 显存支持的对话长度由 1K 提升到了 8K。

ChatGLM2-6B is the second-generation version of the open-source bilingual (Chinese-English) chat model ChatGLM-6B. It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features:

  1. Stronger Performance: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of GLM, and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The evaluation results show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size.
  2. Longer Context: Based on FlashAttention technique, we have extended the context length of the base model from 2K in ChatGLM-6B to 32K, and trained with a context length of 8K during the dialogue alignment, allowing for more rounds of dialogue. However, the current version of ChatGLM2-6B has limited understanding of single-round ultra-long documents, which we will focus on optimizing in future iterations.
  3. More Efficient Inference: Based on Multi-Query Attention technique, ChatGLM2-6B has more efficient inference speed and lower GPU memory usage: under the official implementation, the inference speed has increased by 42% compared to the first generation; under INT4 quantization, the dialogue length supported by 6G GPU memory has increased from 1K to 8K.

软件依赖

pip install --upgrade torch
pip install transformers -U
# modelscope >= 1.7.2

关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO以及使用模型量化以节省显存请参考我们的 Github Repo

For more instructions, including how to run CLI and web demos, and model quantization, please refer to our Github Repo.

Change Log

  • v1.0

示例代码

# 备注最新模型版本要求modelscope >= 1.9.0
# pip install modelscope -U 

from modelscope.utils.constant import Tasks
from modelscope import Model
from modelscope.pipelines import pipeline
model = Model.from_pretrained('ZhipuAI/chatglm2-6b', device_map='auto', revision='v1.0.12')
pipe = pipeline(task=Tasks.chat, model=model)
inputs = {'text':'你好', 'history': []}
result = pipe(inputs)
inputs = {'text':'介绍下清华大学', 'history': result['history']}
result = pipe(inputs)
print(result)

协议

本仓库的代码依照 Apache-2.0 协议开源ChatGLM2-6B 模型的权重的使用则需要遵循 Model License

引用

如果你觉得我们的工作有帮助的话请考虑引用下列论文ChatGLM2-6B 的论文会在近期公布,尽情期待~

@article{zeng2022glm,
  title={Glm-130b: An open bilingual pre-trained model},
  author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
  journal={arXiv preprint arXiv:2210.02414},
  year={2022}
}
@inproceedings{du2022glm,
  title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
  author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages={320--335},
  year={2022}
}