25867ae870 | ||
---|---|---|
.gitattributes | ||
README.md | ||
config.json | ||
configuration.json | ||
generation_config.json | ||
model-00001-of-00004.safetensors | ||
model-00002-of-00004.safetensors | ||
model-00003-of-00004.safetensors | ||
model-00004-of-00004.safetensors | ||
model.safetensors.index.json | ||
special_tokens_map.json | ||
tokenizer.json | ||
tokenizer.model | ||
tokenizer_config.json |
README.md
language | library_name | license | tags | |||||
---|---|---|---|---|---|---|---|---|
|
transformers | gemma |
|
Reminder to use the dev version Transformers:
pip install git+https://github.com/huggingface/transformers.git
Finetune Gemma, Llama 3, Mistral 2-5x faster with 70% less memory via Unsloth!
Directly quantized 4bit model with bitsandbytes
.
We have a Google Colab Tesla T4 notebook for Gemma 2 (9B) here: https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing
✨ Finetune for Free
All notebooks are beginner friendly! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
Unsloth supports | Free Notebooks | Performance | Memory use |
---|---|---|---|
Llama 3 (8B) | ▶️ Start on Colab | 2.4x faster | 58% less |
Gemma 2 (9B) | ▶️ Start on Colab | 2x faster | 63% less |
Mistral (9B) | ▶️ Start on Colab | 2.2x faster | 62% less |
Phi 3 (mini) | ▶️ Start on Colab | 2x faster | 63% less |
TinyLlama | ▶️ Start on Colab | 3.9x faster | 74% less |
CodeLlama (34B) A100 | ▶️ Start on Colab | 1.9x faster | 27% less |
Mistral (7B) 1xT4 | ▶️ Start on Kaggle | 5x faster* | 62% less |
DPO - Zephyr | ▶️ Start on Colab | 1.9x faster | 19% less |
- This conversational notebook is useful for ShareGPT ChatML / Vicuna templates.
- This text completion notebook is for raw text. This DPO notebook replicates Zephyr.
- * Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.