47 lines
1.1 KiB
Markdown
47 lines
1.1 KiB
Markdown
# GLM-Edge-1.5B-Chat
|
||
|
||
中文阅读, 点击[这里](README_zh.md)
|
||
|
||
## Inference with Transformers
|
||
|
||
### Installation
|
||
|
||
Install the transformers library from the source code:
|
||
|
||
```shell
|
||
pip install git+https://github.com/huggingface/transformers.git
|
||
```
|
||
|
||
### Inference
|
||
|
||
```python
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
MODEL_PATH = "THUDM/glm-edge-4b-chat"
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
||
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
|
||
|
||
message = [{"role": "user", "content": "hello!"}]
|
||
|
||
inputs = tokenizer.apply_chat_template(
|
||
message,
|
||
return_tensors="pt",
|
||
add_generation_prompt=True,
|
||
return_dict=True,
|
||
).to(model.device)
|
||
|
||
generate_kwargs = {
|
||
"input_ids": inputs["input_ids"],
|
||
"attention_mask": inputs["attention_mask"],
|
||
"max_new_tokens": 128,
|
||
"do_sample": False,
|
||
}
|
||
out = model.generate(**generate_kwargs)
|
||
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
|
||
|
||
```
|
||
|
||
## License
|
||
|
||
The usage of this model’s weights is subject to the terms outlined in the [LICENSE](LICENSE). |