frameworks |
license |
tasks |
domain |
language |
tools |
|
other |
|
|
|
vllm、fastchat、llamacpp、AdaSeq |
|
GLM-Edge-1.5B-Chat
Read this in English
使用 transformers 库进行推理
安装
请安装源代码的transformers库。
pip install git+https://github.com/huggingface/transformers.git
推理
from modelscope import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "ZhipuAI/glm-edge-4b-chat"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
message = [{"role": "user", "content": "hello!"}]
inputs = tokenizer.apply_chat_template(
message,
return_tensors="pt",
add_generation_prompt=True,
return_dict=True,
).to(model.device)
generate_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": 128,
"do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
协议
本模型的权重的使用则需要遵循 LICENSE。