79 lines
3.5 KiB
Markdown
79 lines
3.5 KiB
Markdown
---
|
||
pipeline_tag: text-generation
|
||
language:
|
||
- multilingual
|
||
inference: false
|
||
license: cc-by-nc-4.0
|
||
library_name: transformers
|
||
---
|
||
|
||
<br><br>
|
||
|
||
<p align="center">
|
||
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
||
</p>
|
||
|
||
<p align="center">
|
||
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
||
</p>
|
||
|
||
[Blog](https://jina.ai/news/reader-lm-small-language-models-for-cleaning-and-converting-html-to-markdown) | [Colab](https://colab.research.google.com/drive/1wXWyj5hOxEHY6WeHbOwEzYAC0WB1I5uA)
|
||
|
||
# Intro
|
||
|
||
Jina Reader-LM is a series of models that convert HTML content to Markdown content, which is useful for content conversion tasks. The model is trained on a curated collection of HTML content and its corresponding Markdown content.
|
||
|
||
# Models
|
||
|
||
| Name | Context Length | Download |
|
||
|-----------------|-------------------|-----------------------------------------------------------------------|
|
||
| reader-lm-0.5b | 256K | [🤗 Hugging Face](https://huggingface.co/jinaai/reader-lm-0.5b) |
|
||
| reader-lm-1.5b | 256K | [🤗 Hugging Face](https://huggingface.co/jinaai/reader-lm-1.5b) |
|
||
| |
|
||
|
||
# Get Started
|
||
|
||
## On Google Colab
|
||
The easiest way to experience reader-lm is by running [our Colab notebook](https://colab.research.google.com/drive/1wXWyj5hOxEHY6WeHbOwEzYAC0WB1I5uA),
|
||
where we demonstrate how to use reader-lm-1.5b to convert the HackerNews website into markdown. The notebook is optimized to run smoothly on Google Colab’s free T4 GPU tier. You can also load reader-lm-0.5b or change the URL to any website and explore the output. Note that the input (i.e., the prompt) to the model is the raw HTML—no prefix instruction is required.
|
||
|
||
## Local
|
||
|
||
To use this model, you need to install `transformers`:
|
||
|
||
```bash
|
||
pip install transformers<=4.43.4
|
||
```
|
||
|
||
Then, you can use the model as follows:
|
||
|
||
```python
|
||
# pip install transformers modelscope
|
||
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
||
checkpoint = "jinaai/reader-lm-1.5b"
|
||
|
||
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
||
|
||
# example html content
|
||
html_content = "<html><body><h1>Hello, world!</h1></body></html>"
|
||
|
||
messages = [{"role": "user", "content": html_content}]
|
||
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
|
||
|
||
print(input_text)
|
||
|
||
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
||
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
||
|
||
print(tokenizer.decode(outputs[0]))
|
||
```
|
||
|
||
## AWS Sagemaker & Azure Marketplace
|
||
[AWS 0.5b](https://aws.amazon.com/marketplace/pp/prodview-nli7b6dueo424?sr=0-1&ref_=beagle&applicationId=AWSMPContessa)
|
||
[AWS 1.5b](https://aws.amazon.com/marketplace/pp/prodview-ms27ixcwq3wjk?sr=0-2&ref_=beagle&applicationId=AWSMPContessa)
|
||
[Azure 0.5b](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/jinaai.reader-lm-500m)
|
||
[Azure 1.5b](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/jinaai.reader-lm-1500m)
|
||
|