first commit
This commit is contained in:
parent
4dbfea4b67
commit
a3e7a7b7e6
283
README.md
283
README.md
|
@ -1,3 +1,284 @@
|
|||
---
|
||||
license: apache-2.0
|
||||
language:
|
||||
- en
|
||||
- it
|
||||
- fr
|
||||
- de
|
||||
- es
|
||||
base_model:
|
||||
- MrLight/dse-qwen2-2b-mrl-v1
|
||||
tags:
|
||||
- transformers
|
||||
- sentence-transformers
|
||||
- Qwen2-VL
|
||||
datasets:
|
||||
- llamaindex/vdr-multilingual-train
|
||||
---
|
||||
|
||||
# vdr-2b-multi-v1
|
||||
|
||||
vdr-2b-multi-v1
|
||||

|
||||
|
||||
vdr-2b-multi-v1 is a multilingual embedding model designed for visual document retrieval across multiple languages and domains. It encodes document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich multilingual documents without the need for any OCR, data extraction pipelines, chunking...
|
||||
|
||||
|
||||
- **Trained on 🇮🇹 Italian, 🇪🇸 Spanish, 🇬🇧 English, 🇫🇷 French and 🇩🇪 German:** together they form a new large, open-source, multilingual training dataset of 500k high-quality samples.
|
||||
|
||||
- **Cross-lingual Retrieval**: substantially better on real-world scenarios. For example, this allows for searching german documents with italian queries.
|
||||
|
||||
- **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality.
|
||||
|
||||
# Usage
|
||||
|
||||
The model uses bf16 tensors and allocates ~4.4GB of VRAM when loaded. You can easily run inference and generate embeddings using 768 image patches and a batch size of 16 even on a cheap NVIDIA T4 GPU. This table reports the memory footprint (GB) under conditions of different batch sizes with HuggingFace Transformers and maximum 768 image patches.
|
||||
|
||||
| Batch Size | GPU Memory (GB) |
|
||||
|------------|-----------------|
|
||||
| 4 | 6.9 |
|
||||
| 8 | 8.8 |
|
||||
| 16 | 11.5 |
|
||||
| 32 | 19.7 |
|
||||
|
||||
You can generate embeddings with this model in many different ways:
|
||||
|
||||
<details open>
|
||||
<summary>
|
||||
via LlamaIndex
|
||||
</summary>
|
||||
|
||||
```bash
|
||||
pip install -U llama-index-embeddings-huggingface
|
||||
```
|
||||
|
||||
```python
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
|
||||
model = HuggingFaceEmbedding(
|
||||
model_name="llamaindex/vdr-2b-multi-v1",
|
||||
device="cpu", # "mps" for mac, "cuda" for nvidia GPUs
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
image_embedding = model.get_image_embedding("image.png")
|
||||
query_embedding = model.get_query_embedding("some query")
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
via HuggingFace Transformers
|
||||
</summary>
|
||||
|
||||
```python
|
||||
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
||||
from PIL import Image
|
||||
import torch
|
||||
import math
|
||||
|
||||
# more pixels -> better embeddings -> more VRAM -> slower inference
|
||||
# From my experience, 768 image patches is the right spot for compute efficient embeddings.
|
||||
max_pixels = 768 * 28 * 28
|
||||
min_pixels = 1 * 28 * 28
|
||||
|
||||
# Load the embedding model and processor
|
||||
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
'llamaindex/vdr-2b-multi-v1',
|
||||
# These are the recommended kwargs for the model, but change them as needed
|
||||
attn_implementation="flash_attention_2",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda:0"
|
||||
).eval()
|
||||
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
'llamaindex/vdr-2b-multi-v1',
|
||||
min_pixels=min_pixels,
|
||||
max_pixels=max_pixels
|
||||
)
|
||||
|
||||
model.padding_side = "left"
|
||||
processor.tokenizer.padding_side = "left"
|
||||
|
||||
document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
|
||||
|
||||
query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
|
||||
```
|
||||
|
||||
**Encode queries**
|
||||
|
||||
```python
|
||||
def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
|
||||
"""
|
||||
Encode a list of queries into a tensor of embeddings.
|
||||
|
||||
Args:
|
||||
queries: A list of strings, each representing a query.
|
||||
dimension: The desired dimension of the output embeddings.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (num_queries, dimension) containing the encoded queries.
|
||||
"""
|
||||
|
||||
dummy_image = Image.new('RGB', (56, 56))
|
||||
inputs = processor(
|
||||
text=[query_prompt % x for x in queries],
|
||||
images=[dummy_image for _ in queries],
|
||||
videos=None,
|
||||
padding='longest',
|
||||
return_tensors='pt'
|
||||
).to('cuda:0')
|
||||
|
||||
cache_position = torch.arange(0, len(queries))
|
||||
inputs = model.prepare_inputs_for_generation(
|
||||
**inputs, cache_position=cache_position, use_cache=False)
|
||||
|
||||
with torch.no_grad():
|
||||
output = self.model(
|
||||
**inputs,
|
||||
return_dict=True,
|
||||
output_hidden_states=True
|
||||
)
|
||||
|
||||
embeddings = output.hidden_states[-1][:, -1]
|
||||
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
|
||||
```
|
||||
|
||||
**Encode documents**
|
||||
|
||||
```python
|
||||
def round_by_factor(number: float, factor: int) -> int:
|
||||
return round(number / factor) * factor
|
||||
|
||||
def ceil_by_factor(number: float, factor: int) -> int:
|
||||
return math.ceil(number / factor) * factor
|
||||
|
||||
def floor_by_factor(number: float, factor: int) -> int:
|
||||
return math.floor(number / factor) * factor
|
||||
|
||||
def smart_resize(height: int, width: int) -> tuple[int, int]:
|
||||
h_bar = max(28, round_by_factor(height, 28))
|
||||
w_bar = max(28, round_by_factor(width, 28))
|
||||
if h_bar * w_bar > max_pixels:
|
||||
beta = math.sqrt((height * width) / max_pixels)
|
||||
h_bar = floor_by_factor(height / beta, 28)
|
||||
w_bar = floor_by_factor(width / beta, 28)
|
||||
elif h_bar * w_bar < min_pixels:
|
||||
beta = math.sqrt(min_pixels / (height * width))
|
||||
h_bar = ceil_by_factor(height * beta, 28)
|
||||
w_bar = ceil_by_factor(width * beta, 28)
|
||||
return w_bar, h_bar
|
||||
|
||||
def resize(image: Image.Image):
|
||||
new_size = smart_resize(image.height, image.width)
|
||||
return image.resize(new_size)
|
||||
|
||||
def encode_documents(documents: list[Image.Image], dimension: int):
|
||||
"""
|
||||
Encode a list of images into a tensor of embeddings.
|
||||
|
||||
Args:
|
||||
documents: A list of PIL Image objects.
|
||||
dimension: The desired dimension of the output embeddings.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (num_documents, dimension) containing the encoded images.
|
||||
"""
|
||||
|
||||
inputs = processor(
|
||||
text=[document_prompt] * len(documents),
|
||||
images=[resize(x) for x in documents],
|
||||
videos=None,
|
||||
padding='longest',
|
||||
return_tensors='pt'
|
||||
).to('cuda:0')
|
||||
|
||||
cache_position = torch.arange(0, len(queries))
|
||||
inputs = model.prepare_inputs_for_generation(
|
||||
**inputs, cache_position=cache_position, use_cache=False)
|
||||
|
||||
with torch.no_grad():
|
||||
output = self.model(
|
||||
**inputs,
|
||||
return_dict=True,
|
||||
output_hidden_states=True
|
||||
)
|
||||
|
||||
embeddings = output.hidden_states[-1][:, -1]
|
||||
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
via SentenceTransformers
|
||||
</summary>
|
||||
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
model = SentenceTransformer(
|
||||
model_name_or_path="llamaindex/vdr-2b-multi-v1",
|
||||
device="cuda",
|
||||
trust_remote_code=True,
|
||||
# These are the recommended kwargs for the model, but change them as needed if you don't have CUDA
|
||||
model_kwargs={
|
||||
"torch_dtype": torch.bfloat16,
|
||||
"device_map": "cuda:0",
|
||||
"attn_implementation": "flash_attention_2"
|
||||
},
|
||||
)
|
||||
|
||||
embeddings = model.encode("image.png")
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
# Training
|
||||
|
||||
The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) dataset that consinsists of 500k high quality, multilingual query image pairs. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.
|
||||
|
||||
# Results
|
||||
|
||||

|
||||
|
||||
The model has been evaluated on the Vidore benchmark and on custom-built evaluation sets that allow testing its multilingual capabilities on text-only, visual-only and mixed page screenshots. The evaluation dataset is publicly available [here on HuggingFace](https://huggingface.co/datasets/llamaindex/vdr-multilingual-test).
|
||||
|
||||
All evaluations are performed by calculating **NDCG@5** scores using **1536 dimensions** vectors and an image resolution that can be represented with **maximum 768 tokens**.
|
||||
|
||||
| | Avg | Italian (text) | Italian (visual) | Italian (mix) |
|
||||
|---------------------|----------|----------------|------------------|---------------|
|
||||
| dse-qwen2-2b-mrl-v1 | 95.1 | 95.1 | 94 | 96.2 |
|
||||
| vdr-2b-multi-v1 | **97.0** | **96.4** | **96.3** | **98.4** |
|
||||
| | **+2%** | | | |
|
||||
|
||||
| | Avg | French (text) | French (visual) | French (mix) |
|
||||
|---------------------|-----------|---------------|-----------------|--------------|
|
||||
| dse-qwen2-2b-mrl-v1 | 93.5 | 94.7 | 90.8 | 95.1 |
|
||||
| vdr-2b-multi-v1 | **95.6** | **95.6** | **93.3** | **97.9** |
|
||||
| | **+2.2%** | | | |
|
||||
|
||||
| | Avg | Spanish (text) | Spanish (visual) | Spanish (mix) |
|
||||
|---------------------|-----------|----------------|------------------|---------------|
|
||||
| dse-qwen2-2b-mrl-v1 | 96.7 | 97.2 | 94.7 | 98.2 |
|
||||
| vdr-2b-multi-v1 | **98.1** | **98.3** | **96.9** | **99.1** |
|
||||
| | **+1.4%** | | | |
|
||||
|
||||
| | Avg | German (text) | German (visual) | German (mix) |
|
||||
|---------------------|-----------|---------------|-----------------|--------------|
|
||||
| dse-qwen2-2b-mrl-v1 | 93.0 | 93.4 | 90 | 95.5 |
|
||||
| vdr-2b-multi-v1 | **96.2** | **94.8** | **95.7** | **98.1** |
|
||||
| | **+3.4%** | | | |
|
||||
|
||||
| | Avg | English (text) | English (visual) | English (mix) |
|
||||
|---------------------|-----------|----------------|------------------|---------------|
|
||||
| dse-qwen2-2b-mrl-v1 | 98.0 | **98.3** | 98.5 | 97.1 |
|
||||
| vdr-2b-multi-v1 | **98.1** | 97.9 | **99.1** | **97.3** |
|
||||
| | **+0.1%** | | | |
|
||||
|
||||
| | **Avg** | **shiftproject** | **government** | **healthcare** | **energy** | **ai** | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** |
|
||||
|--------------------:|---------:|-----------------:|---------------:|---------------:|-----------:|-----------:|-----------:|------------:|-----------:|------------:|-------------:|
|
||||
| dse-qwen2-2b-mrl-v1 | 83.6 | 79.8 | **95.7** | **96.9** | **92** | 98.2 | 56.3 | **85.2** | **53.9** | **87.5** | 90.3 |
|
||||
| vdr-2b-multi-v1 | **84.0** | **82.4** | 95.5 | 96.5 | 91.2 | **98.5** | **58.5** | 84.7 | 53.6 | 87.1 | **92.2** |
|
|
@ -0,0 +1,16 @@
|
|||
{
|
||||
"<|box_end|>": 151649,
|
||||
"<|box_start|>": 151648,
|
||||
"<|endoftext|>": 151643,
|
||||
"<|im_end|>": 151645,
|
||||
"<|im_start|>": 151644,
|
||||
"<|image_pad|>": 151655,
|
||||
"<|object_ref_end|>": 151647,
|
||||
"<|object_ref_start|>": 151646,
|
||||
"<|quad_end|>": 151651,
|
||||
"<|quad_start|>": 151650,
|
||||
"<|video_pad|>": 151656,
|
||||
"<|vision_end|>": 151653,
|
||||
"<|vision_pad|>": 151654,
|
||||
"<|vision_start|>": 151652
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
{
|
||||
"_name_or_path": "MrLight/dse-qwen2-2b-mrl-v1",
|
||||
"architectures": [
|
||||
"Qwen2VLForConditionalGeneration"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 151643,
|
||||
"eos_token_id": 151645,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 1536,
|
||||
"image_token_id": 151655,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 8960,
|
||||
"max_position_embeddings": 32768,
|
||||
"max_window_layers": 28,
|
||||
"model_type": "qwen2_vl",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 28,
|
||||
"num_key_value_heads": 2,
|
||||
"rms_norm_eps": 1e-06,
|
||||
"rope_scaling": {
|
||||
"mrope_section": [
|
||||
16,
|
||||
24,
|
||||
24
|
||||
],
|
||||
"rope_type": "default",
|
||||
"type": "default"
|
||||
},
|
||||
"rope_theta": 1000000.0,
|
||||
"sliding_window": 32768,
|
||||
"tie_word_embeddings": true,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": "4.47.1",
|
||||
"use_cache": true,
|
||||
"use_sliding_window": false,
|
||||
"video_token_id": 151656,
|
||||
"vision_config": {
|
||||
"hidden_size": 1536,
|
||||
"in_chans": 3,
|
||||
"model_type": "qwen2_vl",
|
||||
"spatial_patch_size": 14
|
||||
},
|
||||
"vision_end_token_id": 151653,
|
||||
"vision_start_token_id": 151652,
|
||||
"vision_token_id": 151654,
|
||||
"vocab_size": 151936
|
||||
}
|
|
@ -0,0 +1,13 @@
|
|||
{
|
||||
"__version__": {
|
||||
"sentence_transformers": "3.3.0",
|
||||
"transformers": "4.46.2",
|
||||
"pytorch": "2.2.2"
|
||||
},
|
||||
"prompts":{
|
||||
"image": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>",
|
||||
"query": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
|
||||
},
|
||||
"default_prompt_name": null,
|
||||
"similarity_fn_name": "cosine"
|
||||
}
|
|
@ -0,0 +1,314 @@
|
|||
import base64
|
||||
import json
|
||||
import os
|
||||
import math
|
||||
from io import BytesIO
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch import nn
|
||||
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
||||
|
||||
class Transformer(nn.Module):
|
||||
save_in_root: bool = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
|
||||
processor_name_or_path: Optional[str] = None,
|
||||
max_pixels: int = 768 * 28 * 28,
|
||||
min_pixels: int = 1 * 28 * 28,
|
||||
dimension: int = 2048,
|
||||
max_seq_length: Optional[int] = None,
|
||||
model_args: Optional[Dict[str, Any]] = None,
|
||||
processor_args: Optional[Dict[str, Any]] = None,
|
||||
tokenizer_args: Optional[Dict[str, Any]] = None,
|
||||
config_args: Optional[Dict[str, Any]] = None,
|
||||
cache_dir: Optional[str] = None,
|
||||
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super(Transformer, self).__init__()
|
||||
|
||||
if backend != 'torch':
|
||||
raise ValueError(
|
||||
f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
|
||||
)
|
||||
|
||||
self.dimension = dimension
|
||||
self.max_pixels = max_pixels
|
||||
self.min_pixels = min_pixels
|
||||
self.max_seq_length = max_seq_length
|
||||
|
||||
# Handle args
|
||||
model_kwargs = model_args or {}
|
||||
model_kwargs.update(kwargs)
|
||||
|
||||
processor_kwargs = processor_args or {}
|
||||
processor_kwargs.update({
|
||||
'min_pixels': min_pixels,
|
||||
'max_pixels': max_pixels,
|
||||
'cache_dir': cache_dir
|
||||
})
|
||||
|
||||
# Initialize model
|
||||
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
model_name_or_path,
|
||||
cache_dir=cache_dir,
|
||||
**model_kwargs
|
||||
).eval()
|
||||
|
||||
# Initialize processor
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
processor_name_or_path or model_name_or_path,
|
||||
**processor_kwargs
|
||||
)
|
||||
|
||||
# Set padding sides
|
||||
self.model.padding_side = "left"
|
||||
self.processor.tokenizer.padding_side = "left"
|
||||
|
||||
# Store prompts
|
||||
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
|
||||
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
|
||||
|
||||
# Try to infer max_seq_length if not provided
|
||||
if self.max_seq_length is None:
|
||||
if (
|
||||
hasattr(self.model, 'config')
|
||||
and hasattr(self.model.config, 'max_position_embeddings')
|
||||
and hasattr(self.processor.tokenizer, 'model_max_length')
|
||||
):
|
||||
self.max_seq_length = min(
|
||||
self.model.config.max_position_embeddings,
|
||||
self.processor.tokenizer.model_max_length,
|
||||
)
|
||||
|
||||
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
|
||||
h_bar = max(28, self._round_by_factor(height, 28))
|
||||
w_bar = max(28, self._round_by_factor(width, 28))
|
||||
if h_bar * w_bar > self.max_pixels:
|
||||
beta = math.sqrt((height * width) / self.max_pixels)
|
||||
h_bar = self._floor_by_factor(height / beta, 28)
|
||||
w_bar = self._floor_by_factor(width / beta, 28)
|
||||
elif h_bar * w_bar < self.min_pixels:
|
||||
beta = math.sqrt(self.min_pixels / (height * width))
|
||||
h_bar = self._ceil_by_factor(height * beta, 28)
|
||||
w_bar = self._ceil_by_factor(width * beta, 28)
|
||||
return w_bar, h_bar
|
||||
|
||||
@staticmethod
|
||||
def _round_by_factor(number: float, factor: int) -> int:
|
||||
return round(number / factor) * factor
|
||||
|
||||
@staticmethod
|
||||
def _ceil_by_factor(number: float, factor: int) -> int:
|
||||
return math.ceil(number / factor) * factor
|
||||
|
||||
@staticmethod
|
||||
def _floor_by_factor(number: float, factor: int) -> int:
|
||||
return math.floor(number / factor) * factor
|
||||
|
||||
def _resize_image(self, image: Image.Image) -> Image.Image:
|
||||
new_size = self._smart_resize(image.height, image.width)
|
||||
return image.resize(new_size)
|
||||
|
||||
@staticmethod
|
||||
def _decode_data_image(data_image_str: str) -> Image.Image:
|
||||
header, data = data_image_str.split(',', 1)
|
||||
image_data = base64.b64decode(data)
|
||||
return Image.open(BytesIO(image_data))
|
||||
|
||||
@staticmethod
|
||||
def _is_valid_url(url: str) -> bool:
|
||||
try:
|
||||
result = urlparse(url)
|
||||
# Check if scheme and netloc are present and scheme is http/https
|
||||
return all([result.scheme in ('http', 'https'), result.netloc])
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _is_safe_path(path: str) -> bool:
|
||||
try:
|
||||
# Convert to absolute path and normalize
|
||||
abs_path = os.path.abspath(os.path.normpath(path))
|
||||
# Check if file exists and is a regular file (not a directory or special file)
|
||||
return os.path.isfile(abs_path)
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _load_image_from_url(url: str) -> Image.Image:
|
||||
try:
|
||||
response = requests.get(
|
||||
url,
|
||||
stream=True,
|
||||
timeout=10, # Add timeout
|
||||
headers={'User-Agent': 'Mozilla/5.0'} # Add user agent
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
# Check content type
|
||||
content_type = response.headers.get('content-type', '')
|
||||
if not content_type.startswith('image/'):
|
||||
raise ValueError(f"Invalid content type: {content_type}")
|
||||
|
||||
# Limit file size (e.g., 10MB)
|
||||
content = BytesIO()
|
||||
size = 0
|
||||
max_size = 10 * 1024 * 1024 # 10MB
|
||||
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
size += len(chunk)
|
||||
if size > max_size:
|
||||
raise ValueError("File too large")
|
||||
content.write(chunk)
|
||||
|
||||
content.seek(0)
|
||||
return Image.open(content)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to load image from URL: {str(e)}")
|
||||
|
||||
@staticmethod
|
||||
def _load_image_from_path(image_path: str) -> Image.Image:
|
||||
try:
|
||||
# Convert to absolute path and normalize
|
||||
abs_path = os.path.abspath(os.path.normpath(image_path))
|
||||
|
||||
# Check file size before loading
|
||||
file_size = os.path.getsize(abs_path)
|
||||
max_size = 10 * 1024 * 1024 # 10MB
|
||||
if file_size > max_size:
|
||||
raise ValueError("File too large")
|
||||
|
||||
with Image.open(abs_path) as img:
|
||||
# Make a copy to ensure file handle is closed
|
||||
return img.copy()
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to load image from path: {str(e)}")
|
||||
|
||||
@staticmethod
|
||||
def _load_image_from_bytes(image_bytes: bytes) -> Image.Image:
|
||||
try:
|
||||
# Check size
|
||||
if len(image_bytes) > 10 * 1024 * 1024: # 10MB
|
||||
raise ValueError("Image data too large")
|
||||
|
||||
return Image.open(BytesIO(image_bytes))
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to load image from bytes: {str(e)}")
|
||||
|
||||
def _process_input(self, texts: List[Union[str, Image.Image, bytes]]) -> tuple[List[str], List[Image.Image]]:
|
||||
processed_texts = []
|
||||
processed_images = []
|
||||
dummy_image = Image.new('RGB', (56, 56))
|
||||
|
||||
for sample in texts:
|
||||
if isinstance(sample, str):
|
||||
# Check if the string is a valid URL
|
||||
if self._is_valid_url(sample):
|
||||
try:
|
||||
img = self._load_image_from_url(sample)
|
||||
processed_texts.append(self.document_prompt)
|
||||
processed_images.append(self._resize_image(img))
|
||||
except Exception as e:
|
||||
# If URL loading fails, treat as regular text
|
||||
processed_texts.append(self.query_prompt % sample)
|
||||
processed_images.append(dummy_image)
|
||||
# Check if the string is a valid file path
|
||||
elif self._is_safe_path(sample):
|
||||
try:
|
||||
img = self._load_image_from_path(sample)
|
||||
processed_texts.append(self.document_prompt)
|
||||
processed_images.append(self._resize_image(img))
|
||||
except Exception as e:
|
||||
# If image loading fails, treat as regular text
|
||||
processed_texts.append(self.query_prompt % sample)
|
||||
processed_images.append(dummy_image)
|
||||
else:
|
||||
# Regular text query
|
||||
processed_texts.append(self.query_prompt % sample)
|
||||
processed_images.append(dummy_image)
|
||||
elif isinstance(sample, Image.Image):
|
||||
processed_texts.append(self.document_prompt)
|
||||
processed_images.append(self._resize_image(sample))
|
||||
elif isinstance(sample, bytes):
|
||||
try:
|
||||
img = self._load_image_from_bytes(sample)
|
||||
processed_texts.append(self.document_prompt)
|
||||
processed_images.append(self._resize_image(img))
|
||||
except Exception as e:
|
||||
# If bytes can't be converted to image, use dummy
|
||||
processed_texts.append(self.document_prompt)
|
||||
processed_images.append(dummy_image)
|
||||
|
||||
return processed_texts, processed_images
|
||||
|
||||
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
cache_position = torch.arange(0, features['input_ids'].shape[1])
|
||||
inputs = self.model.prepare_inputs_for_generation(
|
||||
**features, cache_position=cache_position, use_cache=False
|
||||
)
|
||||
|
||||
# ensure inputs are on the same device as the model
|
||||
device = next(self.model.parameters()).device
|
||||
inputs = {k: v.to(device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
|
||||
|
||||
with torch.no_grad():
|
||||
output = self.model(
|
||||
**inputs,
|
||||
return_dict=True,
|
||||
output_hidden_states=True
|
||||
)
|
||||
|
||||
embeddings = output.hidden_states[-1][:, -1]
|
||||
features['sentence_embedding'] = torch.nn.functional.normalize(
|
||||
embeddings[:, :self.dimension], p=2, dim=-1
|
||||
)
|
||||
return features
|
||||
|
||||
def tokenize(self, texts: List[Union[str, Image.Image, bytes]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
|
||||
processed_texts, processed_images = self._process_input(texts)
|
||||
|
||||
return self.processor(
|
||||
text=processed_texts,
|
||||
images=processed_images,
|
||||
videos=None,
|
||||
padding=padding,
|
||||
return_tensors='pt'
|
||||
)
|
||||
|
||||
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
||||
"""Save the model, tokenizer and processor to the given path."""
|
||||
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
||||
self.processor.save_pretrained(output_path)
|
||||
|
||||
# Save the configuration
|
||||
config = {
|
||||
'model_name_or_path': output_path,
|
||||
'max_pixels': self.max_pixels,
|
||||
'min_pixels': self.min_pixels,
|
||||
'dimension': self.dimension,
|
||||
'max_seq_length': self.max_seq_length,
|
||||
}
|
||||
|
||||
config_path = os.path.join(output_path, 'sentence_bert_config.json')
|
||||
with open(config_path, 'w') as f:
|
||||
json.dump(config, f)
|
||||
|
||||
@staticmethod
|
||||
def load(input_path: str) -> 'Transformer':
|
||||
"""Load a saved model from the given path."""
|
||||
# Load configuration
|
||||
config_path = os.path.join(input_path, 'sentence_bert_config.json')
|
||||
if os.path.exists(config_path):
|
||||
with open(config_path) as f:
|
||||
config = json.load(f)
|
||||
else:
|
||||
config = {'model_name_or_path': input_path}
|
||||
|
||||
return Transformer(**config)
|
|
@ -0,0 +1,14 @@
|
|||
{
|
||||
"attn_implementation": "flash_attention_2",
|
||||
"bos_token_id": 151643,
|
||||
"do_sample": true,
|
||||
"eos_token_id": [
|
||||
151645,
|
||||
151643
|
||||
],
|
||||
"pad_token_id": 151643,
|
||||
"temperature": 0.01,
|
||||
"top_k": 1,
|
||||
"top_p": 0.001,
|
||||
"transformers_version": "4.47.1"
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1,18 @@
|
|||
[
|
||||
{
|
||||
"idx": 0,
|
||||
"name": "transformer",
|
||||
"path": "",
|
||||
"type": "custom_st.Transformer",
|
||||
"model_name_or_path": "llamaindex/vdr-2b-multi-v1",
|
||||
"dimension": 2048,
|
||||
"max_pixels": 602112,
|
||||
"min_pixels": 784
|
||||
},
|
||||
{
|
||||
"idx": 1,
|
||||
"name": "normalizer",
|
||||
"path": "1_Normalize",
|
||||
"type": "sentence_transformers.models.Normalize"
|
||||
}
|
||||
]
|
Binary file not shown.
After Width: | Height: | Size: 46 KiB |
|
@ -0,0 +1,29 @@
|
|||
{
|
||||
"do_convert_rgb": true,
|
||||
"do_normalize": true,
|
||||
"do_rescale": true,
|
||||
"do_resize": true,
|
||||
"image_mean": [
|
||||
0.48145466,
|
||||
0.4578275,
|
||||
0.40821073
|
||||
],
|
||||
"image_processor_type": "Qwen2VLImageProcessor",
|
||||
"image_std": [
|
||||
0.26862954,
|
||||
0.26130258,
|
||||
0.27577711
|
||||
],
|
||||
"max_pixels": 602112,
|
||||
"merge_size": 2,
|
||||
"min_pixels": 784,
|
||||
"patch_size": 14,
|
||||
"processor_class": "Qwen2VLProcessor",
|
||||
"resample": 3,
|
||||
"rescale_factor": 0.00392156862745098,
|
||||
"size": {
|
||||
"max_pixels": 12845056,
|
||||
"min_pixels": 3136
|
||||
},
|
||||
"temporal_patch_size": 2
|
||||
}
|
|
@ -0,0 +1,31 @@
|
|||
{
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<|object_ref_start|>",
|
||||
"<|object_ref_end|>",
|
||||
"<|box_start|>",
|
||||
"<|box_end|>",
|
||||
"<|quad_start|>",
|
||||
"<|quad_end|>",
|
||||
"<|vision_start|>",
|
||||
"<|vision_end|>",
|
||||
"<|vision_pad|>",
|
||||
"<|image_pad|>",
|
||||
"<|video_pad|>"
|
||||
],
|
||||
"eos_token": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,147 @@
|
|||
{
|
||||
"add_prefix_space": false,
|
||||
"added_tokens_decoder": {
|
||||
"151643": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151644": {
|
||||
"content": "<|im_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151645": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151646": {
|
||||
"content": "<|object_ref_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151647": {
|
||||
"content": "<|object_ref_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151648": {
|
||||
"content": "<|box_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151649": {
|
||||
"content": "<|box_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151650": {
|
||||
"content": "<|quad_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151651": {
|
||||
"content": "<|quad_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151652": {
|
||||
"content": "<|vision_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151653": {
|
||||
"content": "<|vision_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151654": {
|
||||
"content": "<|vision_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151655": {
|
||||
"content": "<|image_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151656": {
|
||||
"content": "<|video_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
}
|
||||
},
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<|object_ref_start|>",
|
||||
"<|object_ref_end|>",
|
||||
"<|box_start|>",
|
||||
"<|box_end|>",
|
||||
"<|quad_start|>",
|
||||
"<|quad_end|>",
|
||||
"<|vision_start|>",
|
||||
"<|vision_end|>",
|
||||
"<|vision_pad|>",
|
||||
"<|image_pad|>",
|
||||
"<|video_pad|>"
|
||||
],
|
||||
"bos_token": null,
|
||||
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
||||
"clean_up_tokenization_spaces": false,
|
||||
"eos_token": "<|im_end|>",
|
||||
"errors": "replace",
|
||||
"extra_special_tokens": {},
|
||||
"max_pixels": 602112,
|
||||
"min_pixels": 784,
|
||||
"model_max_length": 32768,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"padding_side": "left",
|
||||
"processor_class": "Qwen2VLProcessor",
|
||||
"split_special_tokens": false,
|
||||
"tokenizer_class": "Qwen2Tokenizer",
|
||||
"unk_token": null
|
||||
}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue