288 lines
10 KiB
Python
288 lines
10 KiB
Python
rand_increasing_policies = [
|
|
dict(type='AutoContrast'),
|
|
dict(type='Equalize'),
|
|
dict(type='Invert'),
|
|
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)),
|
|
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)),
|
|
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)),
|
|
dict(
|
|
type='SolarizeAdd',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 110)),
|
|
dict(
|
|
type='ColorTransform',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.9)),
|
|
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Brightness', magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Shear',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.3),
|
|
direction='horizontal'),
|
|
dict(
|
|
type='Shear',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.3),
|
|
direction='vertical'),
|
|
dict(
|
|
type='Translate',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.45),
|
|
direction='horizontal'),
|
|
dict(
|
|
type='Translate',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.45),
|
|
direction='vertical')
|
|
]
|
|
dataset_type = 'ImageNet'
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RandomResizedCrop',
|
|
size=224,
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
|
dict(
|
|
type='RandAugment',
|
|
policies=rand_increasing_policies,
|
|
num_policies=2,
|
|
total_level=10,
|
|
magnitude_level=9,
|
|
magnitude_std=0.5,
|
|
hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')),
|
|
dict(
|
|
type='RandomErasing',
|
|
erase_prob=0.25,
|
|
mode='rand',
|
|
min_area_ratio=0.02,
|
|
max_area_ratio=0.3333333333333333,
|
|
fill_color=[103.53, 116.28, 123.675],
|
|
fill_std=[57.375, 57.12, 58.395]),
|
|
dict(
|
|
type='Normalize',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='ToTensor', keys=['gt_label']),
|
|
dict(type='Collect', keys=['img', 'gt_label'])
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='Resize',
|
|
size=(256, -1),
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(
|
|
type='Normalize',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
data = dict(
|
|
samples_per_gpu=32,
|
|
workers_per_gpu=4,
|
|
train=dict(
|
|
type='ImageNet',
|
|
data_prefix='/data/vdb/ziyuan.tw/yimian/gzn/datasets/',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RandomResizedCrop',
|
|
size=224,
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
|
dict(
|
|
type='RandAugment',
|
|
policies=[
|
|
dict(type='AutoContrast'),
|
|
dict(type='Equalize'),
|
|
dict(type='Invert'),
|
|
dict(
|
|
type='Rotate',
|
|
magnitude_key='angle',
|
|
magnitude_range=(0, 30)),
|
|
dict(
|
|
type='Posterize',
|
|
magnitude_key='bits',
|
|
magnitude_range=(4, 0)),
|
|
dict(
|
|
type='Solarize',
|
|
magnitude_key='thr',
|
|
magnitude_range=(256, 0)),
|
|
dict(
|
|
type='SolarizeAdd',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 110)),
|
|
dict(
|
|
type='ColorTransform',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Contrast',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Brightness',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Sharpness',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.9)),
|
|
dict(
|
|
type='Shear',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.3),
|
|
direction='horizontal'),
|
|
dict(
|
|
type='Shear',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.3),
|
|
direction='vertical'),
|
|
dict(
|
|
type='Translate',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.45),
|
|
direction='horizontal'),
|
|
dict(
|
|
type='Translate',
|
|
magnitude_key='magnitude',
|
|
magnitude_range=(0, 0.45),
|
|
direction='vertical')
|
|
],
|
|
num_policies=2,
|
|
total_level=10,
|
|
magnitude_level=9,
|
|
magnitude_std=0.5,
|
|
hparams=dict(pad_val=[104, 116, 124],
|
|
interpolation='bicubic')),
|
|
dict(
|
|
type='RandomErasing',
|
|
erase_prob=0.25,
|
|
mode='rand',
|
|
min_area_ratio=0.02,
|
|
max_area_ratio=0.3333333333333333,
|
|
fill_color=[103.53, 116.28, 123.675],
|
|
fill_std=[57.375, 57.12, 58.395]),
|
|
dict(
|
|
type='Normalize',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='ToTensor', keys=['gt_label']),
|
|
dict(type='Collect', keys=['img', 'gt_label'])
|
|
],
|
|
ann_file='/data/vdb/ziyuan.tw/yimian/gzn/datasets/virgo_data/dailytags/train_mmcls.txt',
|
|
classes='/data/vdb/ziyuan.tw/yimian/gzn/datasets/virgo_data/dailytags/classname.txt'),
|
|
val=dict(
|
|
type='ImageNet',
|
|
data_prefix='/data/vdb/ziyuan.tw/yimian/gzn/datasets/',
|
|
ann_file='/data/vdb/ziyuan.tw/yimian/gzn/datasets/virgo_data/dailytags/val_mmcls.txt',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='Resize',
|
|
size=(256, -1),
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(
|
|
type='Normalize',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
],
|
|
classes='/data/vdb/ziyuan.tw/yimian/gzn/datasets/virgo_data/dailytags/classname.txt'),
|
|
test=dict(
|
|
type='ImageNet',
|
|
data_prefix='/data/vdb/ziyuan.tw/yimian/gzn/datasets/',
|
|
ann_file='/data/vdb/ziyuan.tw/yimian/gzn/datasets/virgo_data/dailytags/val_mmcls.txt',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='Resize',
|
|
size=(256, -1),
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(
|
|
type='Normalize',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
],
|
|
classes='/data/vdb/ziyuan.tw/yimian/gzn/datasets/virgo_data/dailytags/classname.txt'))
|
|
evaluation = dict(interval=2, metric='accuracy', save_best='auto')
|
|
paramwise_cfg = dict(
|
|
norm_decay_mult=0.0,
|
|
bias_decay_mult=0.0,
|
|
custom_keys={
|
|
'.cls_token': dict(decay_mult=0.0),
|
|
'.pos_embed': dict(decay_mult=0.0)
|
|
})
|
|
|
|
optimizer = dict(
|
|
type='AdamW',
|
|
lr=2e-5, #5e-4 * 32 * 1 / 512, 1.25e-4
|
|
weight_decay=0.1,
|
|
eps=1e-8,
|
|
betas=(0.9, 0.999),
|
|
paramwise_cfg=paramwise_cfg)
|
|
optimizer_config = dict(grad_clip=dict(max_norm=5.0))
|
|
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='CosineAnnealing',
|
|
by_epoch=False,
|
|
min_lr_ratio=1e-2,
|
|
warmup='linear',
|
|
warmup_ratio=1e-3,
|
|
warmup_iters=20,
|
|
warmup_by_epoch=True)
|
|
runner = dict(type='EpochBasedRunner', max_epochs=300)
|
|
checkpoint_config = dict(interval=1, max_keep_ckpts=20, create_symlink=True)
|
|
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
|
dist_params = dict(backend='nccl')
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume_from = None
|
|
workflow = [('train', 1)]
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='NextViT',
|
|
arch='small',
|
|
path_dropout=0.2,
|
|
),
|
|
neck=dict(type='GlobalAveragePooling'),
|
|
head=dict(
|
|
type='LinearClsHead',
|
|
num_classes=1296,
|
|
in_channels=1024,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
),
|
|
)
|
|
custom_hooks = [dict(type='EMAHook', momentum=4e-05, priority='ABOVE_NORMAL')]
|
|
work_dir = './work_dir/'
|
|
gpu_ids = range(0, 32)
|