first commit
This commit is contained in:
parent
623a9aa7dc
commit
ff50af5b49
|
@ -0,0 +1,12 @@
|
|||
{
|
||||
"epoch": 6.0,
|
||||
"eval_accuracy": 0.9852222222222222,
|
||||
"eval_loss": 0.05230661854147911,
|
||||
"eval_runtime": 2.6574,
|
||||
"eval_samples_per_second": 3386.794,
|
||||
"eval_steps_per_second": 423.349,
|
||||
"train_loss": 0.1922683648263396,
|
||||
"train_runtime": 134.4457,
|
||||
"train_samples_per_second": 2276.012,
|
||||
"train_steps_per_second": 71.137
|
||||
}
|
|
@ -0,0 +1,46 @@
|
|||
{
|
||||
"architectures": [
|
||||
"ResNetForImageClassification"
|
||||
],
|
||||
"depths": [
|
||||
2,
|
||||
2
|
||||
],
|
||||
"downsample_in_first_stage": false,
|
||||
"embedding_size": 64,
|
||||
"hidden_act": "relu",
|
||||
"hidden_sizes": [
|
||||
32,
|
||||
64
|
||||
],
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1",
|
||||
"2": "LABEL_2",
|
||||
"3": "LABEL_3",
|
||||
"4": "LABEL_4",
|
||||
"5": "LABEL_5",
|
||||
"6": "LABEL_6",
|
||||
"7": "LABEL_7",
|
||||
"8": "LABEL_8",
|
||||
"9": "LABEL_9"
|
||||
},
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1,
|
||||
"LABEL_2": 2,
|
||||
"LABEL_3": 3,
|
||||
"LABEL_4": 4,
|
||||
"LABEL_5": 5,
|
||||
"LABEL_6": 6,
|
||||
"LABEL_7": 7,
|
||||
"LABEL_8": 8,
|
||||
"LABEL_9": 9
|
||||
},
|
||||
"layer_type": "basic",
|
||||
"model_type": "resnet",
|
||||
"num_channels": 1,
|
||||
"problem_type": "single_label_classification",
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.19.0.dev0"
|
||||
}
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"epoch": 6.0,
|
||||
"eval_accuracy": 0.9852222222222222,
|
||||
"eval_loss": 0.05230661854147911,
|
||||
"eval_runtime": 2.6574,
|
||||
"eval_samples_per_second": 3386.794,
|
||||
"eval_steps_per_second": 423.349
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
{
|
||||
"crop_pct": null,
|
||||
"do_normalize": false,
|
||||
"do_resize": false,
|
||||
"feature_extractor_type": "ConvNextFeatureExtractor",
|
||||
"image_mean": [
|
||||
0.45
|
||||
],
|
||||
"image_std": [
|
||||
0.22
|
||||
],
|
||||
"resample": 3,
|
||||
"size": 224
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,211 @@
|
|||
import logging
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import transformers
|
||||
from torchinfo import summary
|
||||
from torchvision.transforms import Compose, Normalize, ToTensor
|
||||
from transformers import (
|
||||
ConvNextFeatureExtractor,
|
||||
HfArgumentParser,
|
||||
ResNetConfig,
|
||||
ResNetForImageClassification,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
)
|
||||
from transformers.utils import check_min_version
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
||||
them on the command line.
|
||||
"""
|
||||
|
||||
train_val_split: Optional[float] = field(
|
||||
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
},
|
||||
)
|
||||
max_eval_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||
"value if set."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
||||
labels = torch.tensor([example["label"] for example in examples])
|
||||
return {"pixel_values": pixel_values, "labels": labels}
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.19.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def main():
|
||||
parser = HfArgumentParser((DataTrainingArguments, TrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
data_args, training_args = parser.parse_json_file(
|
||||
json_file=os.path.abspath(sys.argv[1])
|
||||
)
|
||||
else:
|
||||
data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
|
||||
dataset = datasets.load_dataset("mnist")
|
||||
|
||||
data_args.train_val_split = (
|
||||
None if "validation" in dataset.keys() else data_args.train_val_split
|
||||
)
|
||||
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
||||
split = dataset["train"].train_test_split(data_args.train_val_split)
|
||||
dataset["train"] = split["train"]
|
||||
dataset["validation"] = split["test"]
|
||||
|
||||
feature_extractor = ConvNextFeatureExtractor(
|
||||
do_resize=False, do_normalize=False, image_mean=[0.45], image_std=[0.22]
|
||||
)
|
||||
|
||||
config = ResNetConfig(
|
||||
num_channels=1,
|
||||
layer_type="basic",
|
||||
depths=[2, 2],
|
||||
hidden_sizes=[32, 64],
|
||||
num_labels=10,
|
||||
)
|
||||
|
||||
model = ResNetForImageClassification(config)
|
||||
|
||||
# Define torchvision transforms to be applied to each image.
|
||||
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
||||
_transforms = Compose([ToTensor(), normalize])
|
||||
|
||||
def transforms(example_batch):
|
||||
"""Apply _train_transforms across a batch."""
|
||||
# black and white
|
||||
example_batch["pixel_values"] = [_transforms(pil_img.convert("L")) for pil_img in example_batch["image"]]
|
||||
return example_batch
|
||||
|
||||
# Load the accuracy metric from the datasets package
|
||||
metric = datasets.load_metric("accuracy")
|
||||
|
||||
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
||||
# predictions and label_ids field) and has to return a dictionary string to float.
|
||||
def compute_metrics(p):
|
||||
"""Computes accuracy on a batch of predictions"""
|
||||
|
||||
accuracy = metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
|
||||
return accuracy
|
||||
|
||||
if training_args.do_train:
|
||||
if data_args.max_train_samples is not None:
|
||||
dataset["train"] = (
|
||||
dataset["train"]
|
||||
.shuffle(seed=training_args.seed)
|
||||
.select(range(data_args.max_train_samples))
|
||||
)
|
||||
|
||||
logger.info("Setting train transform")
|
||||
# Set the training transforms
|
||||
dataset["train"].set_transform(transforms)
|
||||
|
||||
if training_args.do_eval:
|
||||
if "validation" not in dataset:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
if data_args.max_eval_samples is not None:
|
||||
dataset["validation"] = (
|
||||
dataset["validation"]
|
||||
.shuffle(seed=training_args.seed)
|
||||
.select(range(data_args.max_eval_samples))
|
||||
)
|
||||
|
||||
logger.info("Setting validation transform")
|
||||
# Set the validation transforms
|
||||
dataset["validation"].set_transform(transforms)
|
||||
|
||||
from transformers import trainer_utils
|
||||
|
||||
print(dataset)
|
||||
|
||||
training_args = transformers.TrainingArguments(
|
||||
output_dir=training_args.output_dir,
|
||||
do_eval=training_args.do_eval,
|
||||
do_train=training_args.do_train,
|
||||
logging_steps = 500,
|
||||
eval_steps = 500,
|
||||
save_steps= 500,
|
||||
remove_unused_columns = False, # we need to pass the `label` and `image`
|
||||
per_device_train_batch_size = 32,
|
||||
save_total_limit = 2,
|
||||
evaluation_strategy = "steps",
|
||||
num_train_epochs = 6,
|
||||
)
|
||||
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset["train"] if training_args.do_train else None,
|
||||
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
||||
compute_metrics=compute_metrics,
|
||||
tokenizer=feature_extractor,
|
||||
data_collator=collate_fn,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train()
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate()
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"epoch": 6.0,
|
||||
"train_loss": 0.1922683648263396,
|
||||
"train_runtime": 134.4457,
|
||||
"train_samples_per_second": 2276.012,
|
||||
"train_steps_per_second": 71.137
|
||||
}
|
|
@ -0,0 +1,310 @@
|
|||
{
|
||||
"best_metric": null,
|
||||
"best_model_checkpoint": null,
|
||||
"epoch": 6.0,
|
||||
"global_step": 9564,
|
||||
"is_hyper_param_search": false,
|
||||
"is_local_process_zero": true,
|
||||
"is_world_process_zero": true,
|
||||
"log_history": [
|
||||
{
|
||||
"epoch": 0.31,
|
||||
"learning_rate": 4.7386030949393564e-05,
|
||||
"loss": 1.4207,
|
||||
"step": 500
|
||||
},
|
||||
{
|
||||
"epoch": 0.31,
|
||||
"eval_accuracy": 0.9008888888888889,
|
||||
"eval_loss": 0.7066789269447327,
|
||||
"eval_runtime": 2.6965,
|
||||
"eval_samples_per_second": 3337.621,
|
||||
"eval_steps_per_second": 417.203,
|
||||
"step": 500
|
||||
},
|
||||
{
|
||||
"epoch": 0.63,
|
||||
"learning_rate": 4.477206189878712e-05,
|
||||
"loss": 0.5086,
|
||||
"step": 1000
|
||||
},
|
||||
{
|
||||
"epoch": 0.63,
|
||||
"eval_accuracy": 0.9516666666666667,
|
||||
"eval_loss": 0.3055577874183655,
|
||||
"eval_runtime": 2.6576,
|
||||
"eval_samples_per_second": 3386.509,
|
||||
"eval_steps_per_second": 423.314,
|
||||
"step": 1000
|
||||
},
|
||||
{
|
||||
"epoch": 0.94,
|
||||
"learning_rate": 4.215809284818068e-05,
|
||||
"loss": 0.2731,
|
||||
"step": 1500
|
||||
},
|
||||
{
|
||||
"epoch": 0.94,
|
||||
"eval_accuracy": 0.9648888888888889,
|
||||
"eval_loss": 0.18555375933647156,
|
||||
"eval_runtime": 2.6597,
|
||||
"eval_samples_per_second": 3383.793,
|
||||
"eval_steps_per_second": 422.974,
|
||||
"step": 1500
|
||||
},
|
||||
{
|
||||
"epoch": 1.25,
|
||||
"learning_rate": 3.954412379757424e-05,
|
||||
"loss": 0.1976,
|
||||
"step": 2000
|
||||
},
|
||||
{
|
||||
"epoch": 1.25,
|
||||
"eval_accuracy": 0.9701111111111111,
|
||||
"eval_loss": 0.14159560203552246,
|
||||
"eval_runtime": 2.715,
|
||||
"eval_samples_per_second": 3314.86,
|
||||
"eval_steps_per_second": 414.357,
|
||||
"step": 2000
|
||||
},
|
||||
{
|
||||
"epoch": 1.57,
|
||||
"learning_rate": 3.69301547469678e-05,
|
||||
"loss": 0.1565,
|
||||
"step": 2500
|
||||
},
|
||||
{
|
||||
"epoch": 1.57,
|
||||
"eval_accuracy": 0.9738888888888889,
|
||||
"eval_loss": 0.11081045866012573,
|
||||
"eval_runtime": 2.6963,
|
||||
"eval_samples_per_second": 3337.905,
|
||||
"eval_steps_per_second": 417.238,
|
||||
"step": 2500
|
||||
},
|
||||
{
|
||||
"epoch": 1.88,
|
||||
"learning_rate": 3.431618569636136e-05,
|
||||
"loss": 0.128,
|
||||
"step": 3000
|
||||
},
|
||||
{
|
||||
"epoch": 1.88,
|
||||
"eval_accuracy": 0.976,
|
||||
"eval_loss": 0.09747562557458878,
|
||||
"eval_runtime": 2.6961,
|
||||
"eval_samples_per_second": 3338.209,
|
||||
"eval_steps_per_second": 417.276,
|
||||
"step": 3000
|
||||
},
|
||||
{
|
||||
"epoch": 2.2,
|
||||
"learning_rate": 3.170221664575492e-05,
|
||||
"loss": 0.1133,
|
||||
"step": 3500
|
||||
},
|
||||
{
|
||||
"epoch": 2.2,
|
||||
"eval_accuracy": 0.9788888888888889,
|
||||
"eval_loss": 0.08474569022655487,
|
||||
"eval_runtime": 2.7245,
|
||||
"eval_samples_per_second": 3303.375,
|
||||
"eval_steps_per_second": 412.922,
|
||||
"step": 3500
|
||||
},
|
||||
{
|
||||
"epoch": 2.51,
|
||||
"learning_rate": 2.9088247595148475e-05,
|
||||
"loss": 0.1031,
|
||||
"step": 4000
|
||||
},
|
||||
{
|
||||
"epoch": 2.51,
|
||||
"eval_accuracy": 0.9804444444444445,
|
||||
"eval_loss": 0.07724875211715698,
|
||||
"eval_runtime": 2.6363,
|
||||
"eval_samples_per_second": 3413.847,
|
||||
"eval_steps_per_second": 426.731,
|
||||
"step": 4000
|
||||
},
|
||||
{
|
||||
"epoch": 2.82,
|
||||
"learning_rate": 2.6474278544542037e-05,
|
||||
"loss": 0.09,
|
||||
"step": 4500
|
||||
},
|
||||
{
|
||||
"epoch": 2.82,
|
||||
"eval_accuracy": 0.9818888888888889,
|
||||
"eval_loss": 0.0697416290640831,
|
||||
"eval_runtime": 2.6295,
|
||||
"eval_samples_per_second": 3422.689,
|
||||
"eval_steps_per_second": 427.836,
|
||||
"step": 4500
|
||||
},
|
||||
{
|
||||
"epoch": 3.14,
|
||||
"learning_rate": 2.386030949393559e-05,
|
||||
"loss": 0.0871,
|
||||
"step": 5000
|
||||
},
|
||||
{
|
||||
"epoch": 3.14,
|
||||
"eval_accuracy": 0.9815555555555555,
|
||||
"eval_loss": 0.066066212952137,
|
||||
"eval_runtime": 2.6946,
|
||||
"eval_samples_per_second": 3340.06,
|
||||
"eval_steps_per_second": 417.507,
|
||||
"step": 5000
|
||||
},
|
||||
{
|
||||
"epoch": 3.45,
|
||||
"learning_rate": 2.1246340443329153e-05,
|
||||
"loss": 0.0733,
|
||||
"step": 5500
|
||||
},
|
||||
{
|
||||
"epoch": 3.45,
|
||||
"eval_accuracy": 0.9822222222222222,
|
||||
"eval_loss": 0.06342040002346039,
|
||||
"eval_runtime": 2.6897,
|
||||
"eval_samples_per_second": 3346.09,
|
||||
"eval_steps_per_second": 418.261,
|
||||
"step": 5500
|
||||
},
|
||||
{
|
||||
"epoch": 3.76,
|
||||
"learning_rate": 1.863237139272271e-05,
|
||||
"loss": 0.0761,
|
||||
"step": 6000
|
||||
},
|
||||
{
|
||||
"epoch": 3.76,
|
||||
"eval_accuracy": 0.983,
|
||||
"eval_loss": 0.06072380393743515,
|
||||
"eval_runtime": 2.6938,
|
||||
"eval_samples_per_second": 3340.98,
|
||||
"eval_steps_per_second": 417.623,
|
||||
"step": 6000
|
||||
},
|
||||
{
|
||||
"epoch": 4.08,
|
||||
"learning_rate": 1.601840234211627e-05,
|
||||
"loss": 0.0739,
|
||||
"step": 6500
|
||||
},
|
||||
{
|
||||
"epoch": 4.08,
|
||||
"eval_accuracy": 0.9832222222222222,
|
||||
"eval_loss": 0.05795769765973091,
|
||||
"eval_runtime": 2.6767,
|
||||
"eval_samples_per_second": 3362.391,
|
||||
"eval_steps_per_second": 420.299,
|
||||
"step": 6500
|
||||
},
|
||||
{
|
||||
"epoch": 4.39,
|
||||
"learning_rate": 1.340443329150983e-05,
|
||||
"loss": 0.0643,
|
||||
"step": 7000
|
||||
},
|
||||
{
|
||||
"epoch": 4.39,
|
||||
"eval_accuracy": 0.9844444444444445,
|
||||
"eval_loss": 0.05685265362262726,
|
||||
"eval_runtime": 2.6876,
|
||||
"eval_samples_per_second": 3348.672,
|
||||
"eval_steps_per_second": 418.584,
|
||||
"step": 7000
|
||||
},
|
||||
{
|
||||
"epoch": 4.71,
|
||||
"learning_rate": 1.0790464240903388e-05,
|
||||
"loss": 0.0678,
|
||||
"step": 7500
|
||||
},
|
||||
{
|
||||
"epoch": 4.71,
|
||||
"eval_accuracy": 0.984,
|
||||
"eval_loss": 0.05617769435048103,
|
||||
"eval_runtime": 2.6484,
|
||||
"eval_samples_per_second": 3398.278,
|
||||
"eval_steps_per_second": 424.785,
|
||||
"step": 7500
|
||||
},
|
||||
{
|
||||
"epoch": 5.02,
|
||||
"learning_rate": 8.176495190296946e-06,
|
||||
"loss": 0.0617,
|
||||
"step": 8000
|
||||
},
|
||||
{
|
||||
"epoch": 5.02,
|
||||
"eval_accuracy": 0.9853333333333333,
|
||||
"eval_loss": 0.053985536098480225,
|
||||
"eval_runtime": 2.672,
|
||||
"eval_samples_per_second": 3368.244,
|
||||
"eval_steps_per_second": 421.03,
|
||||
"step": 8000
|
||||
},
|
||||
{
|
||||
"epoch": 5.33,
|
||||
"learning_rate": 5.562526139690506e-06,
|
||||
"loss": 0.0571,
|
||||
"step": 8500
|
||||
},
|
||||
{
|
||||
"epoch": 5.33,
|
||||
"eval_accuracy": 0.9847777777777778,
|
||||
"eval_loss": 0.05352585390210152,
|
||||
"eval_runtime": 2.7082,
|
||||
"eval_samples_per_second": 3323.274,
|
||||
"eval_steps_per_second": 415.409,
|
||||
"step": 8500
|
||||
},
|
||||
{
|
||||
"epoch": 5.65,
|
||||
"learning_rate": 2.9485570890840656e-06,
|
||||
"loss": 0.0608,
|
||||
"step": 9000
|
||||
},
|
||||
{
|
||||
"epoch": 5.65,
|
||||
"eval_accuracy": 0.9851111111111112,
|
||||
"eval_loss": 0.053133774548769,
|
||||
"eval_runtime": 2.6753,
|
||||
"eval_samples_per_second": 3364.134,
|
||||
"eval_steps_per_second": 420.517,
|
||||
"step": 9000
|
||||
},
|
||||
{
|
||||
"epoch": 5.96,
|
||||
"learning_rate": 3.345880384776244e-07,
|
||||
"loss": 0.0571,
|
||||
"step": 9500
|
||||
},
|
||||
{
|
||||
"epoch": 5.96,
|
||||
"eval_accuracy": 0.9847777777777778,
|
||||
"eval_loss": 0.05344167724251747,
|
||||
"eval_runtime": 2.6425,
|
||||
"eval_samples_per_second": 3405.863,
|
||||
"eval_steps_per_second": 425.733,
|
||||
"step": 9500
|
||||
},
|
||||
{
|
||||
"epoch": 6.0,
|
||||
"step": 9564,
|
||||
"total_flos": 264960533376000.0,
|
||||
"train_loss": 0.1922683648263396,
|
||||
"train_runtime": 134.4457,
|
||||
"train_samples_per_second": 2276.012,
|
||||
"train_steps_per_second": 71.137
|
||||
}
|
||||
],
|
||||
"max_steps": 9564,
|
||||
"num_train_epochs": 6,
|
||||
"total_flos": 264960533376000.0,
|
||||
"trial_name": null,
|
||||
"trial_params": null
|
||||
}
|
Binary file not shown.
Loading…
Reference in New Issue