212 lines
7.2 KiB
Python
212 lines
7.2 KiB
Python
import logging
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import torch
|
|
import transformers
|
|
from torchinfo import summary
|
|
from torchvision.transforms import Compose, Normalize, ToTensor
|
|
from transformers import (
|
|
ConvNextFeatureExtractor,
|
|
HfArgumentParser,
|
|
ResNetConfig,
|
|
ResNetForImageClassification,
|
|
Trainer,
|
|
TrainingArguments,
|
|
)
|
|
from transformers.utils import check_min_version
|
|
from transformers.utils.versions import require_version
|
|
|
|
import numpy as np
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
|
them on the command line.
|
|
"""
|
|
|
|
train_val_split: Optional[float] = field(
|
|
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
labels = torch.tensor([example["label"] for example in examples])
|
|
return {"pixel_values": pixel_values, "labels": labels}
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.19.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def main():
|
|
parser = HfArgumentParser((DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
data_args, training_args = parser.parse_json_file(
|
|
json_file=os.path.abspath(sys.argv[1])
|
|
)
|
|
else:
|
|
data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
|
|
dataset = datasets.load_dataset("mnist")
|
|
|
|
data_args.train_val_split = (
|
|
None if "validation" in dataset.keys() else data_args.train_val_split
|
|
)
|
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
|
split = dataset["train"].train_test_split(data_args.train_val_split)
|
|
dataset["train"] = split["train"]
|
|
dataset["validation"] = split["test"]
|
|
|
|
feature_extractor = ConvNextFeatureExtractor(
|
|
do_resize=False, do_normalize=False, image_mean=[0.45], image_std=[0.22]
|
|
)
|
|
|
|
config = ResNetConfig(
|
|
num_channels=1,
|
|
layer_type="basic",
|
|
depths=[2, 2],
|
|
hidden_sizes=[32, 64],
|
|
num_labels=10,
|
|
)
|
|
|
|
model = ResNetForImageClassification(config)
|
|
|
|
# Define torchvision transforms to be applied to each image.
|
|
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
|
_transforms = Compose([ToTensor(), normalize])
|
|
|
|
def transforms(example_batch):
|
|
"""Apply _train_transforms across a batch."""
|
|
# black and white
|
|
example_batch["pixel_values"] = [_transforms(pil_img.convert("L")) for pil_img in example_batch["image"]]
|
|
return example_batch
|
|
|
|
# Load the accuracy metric from the datasets package
|
|
metric = datasets.load_metric("accuracy")
|
|
|
|
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
|
# predictions and label_ids field) and has to return a dictionary string to float.
|
|
def compute_metrics(p):
|
|
"""Computes accuracy on a batch of predictions"""
|
|
|
|
accuracy = metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
|
|
return accuracy
|
|
|
|
if training_args.do_train:
|
|
if data_args.max_train_samples is not None:
|
|
dataset["train"] = (
|
|
dataset["train"]
|
|
.shuffle(seed=training_args.seed)
|
|
.select(range(data_args.max_train_samples))
|
|
)
|
|
|
|
logger.info("Setting train transform")
|
|
# Set the training transforms
|
|
dataset["train"].set_transform(transforms)
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in dataset:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
if data_args.max_eval_samples is not None:
|
|
dataset["validation"] = (
|
|
dataset["validation"]
|
|
.shuffle(seed=training_args.seed)
|
|
.select(range(data_args.max_eval_samples))
|
|
)
|
|
|
|
logger.info("Setting validation transform")
|
|
# Set the validation transforms
|
|
dataset["validation"].set_transform(transforms)
|
|
|
|
from transformers import trainer_utils
|
|
|
|
print(dataset)
|
|
|
|
training_args = transformers.TrainingArguments(
|
|
output_dir=training_args.output_dir,
|
|
do_eval=training_args.do_eval,
|
|
do_train=training_args.do_train,
|
|
logging_steps = 500,
|
|
eval_steps = 500,
|
|
save_steps= 500,
|
|
remove_unused_columns = False, # we need to pass the `label` and `image`
|
|
per_device_train_batch_size = 32,
|
|
save_total_limit = 2,
|
|
evaluation_strategy = "steps",
|
|
num_train_epochs = 6,
|
|
)
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=dataset["train"] if training_args.do_train else None,
|
|
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
|
compute_metrics=compute_metrics,
|
|
tokenizer=feature_extractor,
|
|
data_collator=collate_fn,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
train_result = trainer.train()
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate()
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|