129 lines
15 KiB
Markdown
129 lines
15 KiB
Markdown
|
<details open="" style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: rgb(8, 8, 8); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); margin-top: 0px !important; margin-bottom: 16px; --fonts-override: var(--fonts-default-override-zh-cn); color: rgb(33, 33, 33); font-family: system-ui-zh-cn, -apple-system, "Segoe UI", system-ui, Roboto, "Helvetica Neue", Arial, "Noto Sans", "Liberation Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Noto Color Emoji", "Twemoji Mozilla"; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><table style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); text-indent: 0px; border-color: inherit; border-collapse: collapse; --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); margin-top: 0px; margin-bottom: 16px; width: max-content; max-width: 100%; display: block; overflow: auto; --fonts-override: var(--fonts-default-override-zh-cn);"><thead style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); --fonts-override: var(--fonts-default-override-zh-cn);"><tr style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); border-top: 1px solid var(--color-secondary); --fonts-override: var(--fonts-default-override-zh-cn);"><th style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); font-weight: var(--font-weight-semibold); border: 1px solid var(--color-secondary) !important; padding: 6px 13px !important; --fonts-override: var(--fonts-default-override-zh-cn); transition: none;"><br class="Apple-interchange-newline">pipeline_tag</th><th style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); font-weight: var(--font-weight-semibold); border: 1px solid var(--color-secondary) !important; padding: 6px 13px !important; --fonts-override: var(--fonts-default-override-zh-cn); transition: none;">tags</th><th style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); font-weight: var(--font-weight-semibold); border: 1px solid var(--color-secondary) !important; padding: 6px 13px !important; --fonts-override: var(--fonts-default-override-zh-cn); transition: none;">languages</th><th style="box-sizing: border-box; scrollbar-color: var(--color-primary)transparent; caret-color: var(--color-caret); --fonts-regular: var(--fonts-override,var(--fonts-proportional)),"Noto Sans","Liberation Sans",sans-serif,var(--fonts-emoji); font-weight: var(--font-weight-semibold); bo
|
|||
|
|
|||
|
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
|||
|
|
|||
|
在 COCO 数据集上进行预训练的图像描述模型卡 - 基础架构(具有 ViT 大型骨干网络)。
|
|||
|
|
|||
|
| [![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif)](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
|
|||
|
| :----------------------------------------------------------: |
|
|||
|
| **从BLIP官方仓库中提取数据 ** |
|
|||
|
|
|||
|
## 摘要
|
|||
|
|
|||
|
作者在 [论文](https://arxiv.org/abs/2201.12086)的摘要中写道:
|
|||
|
|
|||
|
视觉-语言预训练(VLP)提高了许多视觉-语言任务的性能上取得了进展。然而,大多数现有的预训练模型仅在理解任务或生成任务中表现出色。此外,通过使用从网络收集的包含噪声的图像-文本对来扩展数据集,在很大程度上实现了性能的提高,这是一个次优的监督来源。在本文中,我们提出了 BLIP,一种新的 VLP 框架,它可以灵活地应用于视觉-语言理解和生成任务。BLIP 通过自展标注(bootstrapping the captions),可以有效地利用带有噪声的 web 数据,其中标注器(captioner)生成标注,过滤器(filter)去除有噪声的标注。该研究在视觉 - 语言任务上取得了 SOTA 性能,例如在图像 - 文本检索任务上, recall@1 提高 2.7%;在图像标注任务上,CIDEr 提高 2.8%、VQA 提高 +1.6%。当将 BLIP 以零样本的方式直接迁移到视频 - 语言任务时,BLIP 也表现出很强的泛化能力。代码、模型和数据集已发布。
|
|||
|
|
|||
|
## 用途
|
|||
|
|
|||
|
您可以使用此模型进行有条件和无条件的图像描述生成。
|
|||
|
|
|||
|
### 使用 Pytorch 模型
|
|||
|
|
|||
|
#### 在 CPU 上运行模型
|
|||
|
|
|||
|
```python
|
|||
|
import requests
|
|||
|
from PIL import Image
|
|||
|
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|||
|
|
|||
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
|||
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
|||
|
|
|||
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
|||
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
|||
|
|
|||
|
# conditional image captioning
|
|||
|
text = "a photography of"
|
|||
|
inputs = processor(raw_image, text, return_tensors="pt")
|
|||
|
|
|||
|
out = model.generate(**inputs)
|
|||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
|||
|
|
|||
|
# unconditional image captioning
|
|||
|
inputs = processor(raw_image, return_tensors="pt")
|
|||
|
|
|||
|
out = model.generate(**inputs)
|
|||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
|||
|
```
|
|||
|
|
|||
|
#### 在 GPU 上运行模型
|
|||
|
|
|||
|
##### 全精度
|
|||
|
|
|||
|
```python
|
|||
|
import requests
|
|||
|
from PIL import Image
|
|||
|
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|||
|
|
|||
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
|||
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda")
|
|||
|
|
|||
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
|||
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
|||
|
|
|||
|
# conditional image captioning
|
|||
|
text = "a photography of"
|
|||
|
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
|||
|
|
|||
|
out = model.generate(**inputs)
|
|||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
|||
|
|
|||
|
# unconditional image captioning
|
|||
|
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
|||
|
|
|||
|
out = model.generate(**inputs)
|
|||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
|||
|
```
|
|||
|
|
|||
|
##### 半精度 (`float16`)
|
|||
|
|
|||
|
```python
|
|||
|
import torch
|
|||
|
import requests
|
|||
|
from PIL import Image
|
|||
|
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|||
|
|
|||
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
|||
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
|||
|
|
|||
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
|||
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
|||
|
|
|||
|
# conditional image captioning
|
|||
|
text = "a photography of"
|
|||
|
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
|||
|
|
|||
|
out = model.generate(**inputs)
|
|||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
|||
|
# >>> a photography of a woman and her dog
|
|||
|
|
|||
|
# unconditional image captioning
|
|||
|
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
|||
|
|
|||
|
out = model.generate(**inputs)
|
|||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
|||
|
>>> a woman sitting on the beach with her dog
|
|||
|
```
|
|||
|
|
|||
|
## BibTex条目和引用信息
|
|||
|
|
|||
|
```text
|
|||
|
@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
|||
|
doi = {10.48550/ARXIV.2201.12086},
|
|||
|
|
|||
|
url = {https://arxiv.org/abs/2201.12086},
|
|||
|
|
|||
|
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
|||
|
|
|||
|
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
|||
|
|
|||
|
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
|||
|
|
|||
|
publisher = {arXiv},
|
|||
|
|
|||
|
year = {2022},
|
|||
|
|
|||
|
copyright = {Creative Commons Attribution 4.0 International}
|
|||
|
}
|
|||
|
```
|