first commit

This commit is contained in:
Charles95 2024-10-21 03:55:08 +00:00
commit 5c7ba6f291
16 changed files with 2431 additions and 0 deletions

35
.gitattributes vendored Normal file
View File

@ -0,0 +1,35 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text

16
README.md Normal file
View File

@ -0,0 +1,16 @@
---
license: mit
language:
- en
- zh
---
## Introduction
The ShieldLM model ([paper link](https://arxiv.org/abs/2402.16444)) initialized from [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b). ShieldLM is a bilingual (Chinese and English) safety detector that mainly aims to help to detect safety issues in LLMs' generations. It aligns with general human safety standards, supports fine-grained customizable detection rules, and provides explanations for its decisions.
Refer to our [github repository](https://github.com/thu-coai/ShieldLM) for more detailed information.
## Usage
Please refer to our [github repository](https://github.com/thu-coai/ShieldLM) for the detailed usage instructions.
## Performance
ShieldLM demonstrates impressive detection performance across 4 ID and OOD test sets, compared to strong baselines such as GPT-4, Llama Guard and Perspective API.
Refer to [our paper](https://arxiv.org/abs/2402.16444) for more detailed evaluation results.

36
config.json Normal file
View File

@ -0,0 +1,36 @@
{
"_name_or_path": "/data/zhangzhexin/huggingface_pretrained_models/internlm2-chat-7b",
"architectures": [
"InternLM2ForCausalLM"
],
"attn_implementation": "eager",
"auto_map": {
"AutoConfig": "configuration_internlm2.InternLM2Config",
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
},
"bias": false,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 32768,
"model_type": "internlm2",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"pad_token_id": 2,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 2.0,
"type": "dynamic"
},
"rope_theta": 1000000,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.36.2",
"use_cache": true,
"vocab_size": 92544
}

151
configuration_internlm2.py Normal file
View File

@ -0,0 +1,151 @@
# coding=utf-8
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" InternLM2 model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
class InternLM2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`InternLM2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
Example:
"""
model_type = "internlm2"
_auto_class = "AutoConfig"
def __init__( # pylint: disable=W0102
self,
vocab_size=103168,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
bias=True,
rope_theta=10000,
rope_scaling=None,
attn_implementation="eager",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.bias = bias
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attn_implementation = attn_implementation
if self.attn_implementation is None:
self.attn_implementation = "eager"
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")

7
generation_config.json Normal file
View File

@ -0,0 +1,7 @@
{
"_from_model_config": true,
"bos_token_id": 1,
"eos_token_id": 2,
"pad_token_id": 2,
"transformers_version": "4.36.2"
}

BIN
model-00001-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00003-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00004-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,234 @@
{
"metadata": {
"total_size": 15475417088
},
"weight_map": {
"model.layers.0.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.0.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.0.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.0.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.0.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.0.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.0.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.1.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.1.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.1.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.1.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.1.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.1.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.1.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.10.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.10.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.10.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.10.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.10.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.10.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.10.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.11.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.11.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.11.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.11.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.11.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.11.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.11.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.12.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.12.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.12.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.12.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.12.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.12.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.12.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.13.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.13.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.13.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.13.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.13.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.13.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.13.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.14.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.14.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.14.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.14.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.14.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.14.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.14.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.15.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.15.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.15.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.15.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.15.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.15.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.15.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.16.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.16.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.16.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.16.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.16.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.16.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.16.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.17.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.17.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.17.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.17.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.17.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.17.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.17.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.18.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.18.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.18.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.18.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.18.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.18.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.18.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.19.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.19.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.19.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.19.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.19.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.19.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.19.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.2.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.2.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.2.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.2.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.2.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.2.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.2.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.20.attention.wo.weight": "model-00002-of-00004.safetensors",
"model.layers.20.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"model.layers.20.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.20.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"model.layers.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.20.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.20.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.21.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.21.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.21.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.21.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.21.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.21.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.22.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.22.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.22.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.22.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.22.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.22.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.22.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.23.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.23.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.23.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.23.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.23.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.23.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.23.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.24.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.24.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.24.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.24.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.24.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.24.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.24.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.25.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.25.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.25.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.25.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.25.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.25.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.25.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.26.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.26.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.26.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.26.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.26.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.26.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.26.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.27.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.27.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.27.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.27.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.27.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.27.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.27.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.28.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.28.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.28.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.28.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.28.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.28.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.28.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.29.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.29.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.29.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.29.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.29.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.29.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.29.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.3.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.3.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.3.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.3.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.3.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.3.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.3.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.30.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.30.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.30.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.30.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.30.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.30.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.30.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.31.attention.wo.weight": "model-00003-of-00004.safetensors",
"model.layers.31.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"model.layers.31.attention_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.31.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"model.layers.31.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"model.layers.31.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"model.layers.31.ffn_norm.weight": "model-00003-of-00004.safetensors",
"model.layers.4.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.4.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.4.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.4.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.4.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.4.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.4.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.5.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.5.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.5.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.5.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.5.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.5.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.5.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.6.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.6.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.6.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.6.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.6.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.6.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.6.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.7.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.7.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.7.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.7.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.7.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.7.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.7.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.8.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.8.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.8.attention_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.8.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.8.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"model.layers.8.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"model.layers.8.ffn_norm.weight": "model-00001-of-00004.safetensors",
"model.layers.9.attention.wo.weight": "model-00001-of-00004.safetensors",
"model.layers.9.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"model.layers.9.attention_norm.weight": "model-00002-of-00004.safetensors",
"model.layers.9.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"model.layers.9.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"model.layers.9.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"model.layers.9.ffn_norm.weight": "model-00002-of-00004.safetensors",
"model.norm.weight": "model-00003-of-00004.safetensors",
"model.tok_embeddings.weight": "model-00001-of-00004.safetensors",
"output.weight": "model-00004-of-00004.safetensors"
}
}

1391
modeling_internlm2.py Normal file

File diff suppressed because it is too large Load Diff

6
special_tokens_map.json Normal file
View File

@ -0,0 +1,6 @@
{
"bos_token": "<s>",
"eos_token": "</s>",
"pad_token": "</s>",
"unk_token": "<unk>"
}

236
tokenization_internlm2.py Normal file
View File

@ -0,0 +1,236 @@
# coding=utf-8
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
PRETRAINED_VOCAB_FILES_MAP = {}
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
class InternLM2Tokenizer(PreTrainedTokenizer):
"""
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
_auto_class = "AutoTokenizer"
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="</s>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
decode_with_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.decode_with_prefix_space = decode_with_prefix_space
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
self._no_prefix_space_tokens = None
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def no_prefix_space_tokens(self):
if self._no_prefix_space_tokens is None:
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("")}
return self._no_prefix_space_tokens
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
@property
def bos_token_id(self) -> Optional[int]:
return self.sp_model.bos_id()
@property
def eos_token_id(self) -> Optional[int]:
return self.sp_model.eos_id()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text):
"""Returns a tokenized string."""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def _maybe_add_prefix_space(self, tokens, decoded):
if tokens and tokens[0] not in self.no_prefix_space_tokens:
return " " + decoded
else:
return decoded
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
out_string = self.clean_up_tokenization(out_string)
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
return out_string[1:]
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is not None:
output = output + token_ids_1
if self.add_eos_token:
output = output + [self.eos_token_id]
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]

View File

@ -0,0 +1,214 @@
# coding=utf-8
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization Fast class for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple
from tokenizers import processors, decoders, Tokenizer, normalizers
from tokenizers.models import BPE
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from transformers.convert_slow_tokenizer import (
SLOW_TO_FAST_CONVERTERS,
SpmConverter,
SentencePieceExtractor,
)
from .tokenization_internlm2 import InternLM2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
class InternLM2Converter(SpmConverter):
handle_byte_fallback = True
def vocab(self, proto):
vocab = [
("<unk>", 0.0),
("<s>", 0.0),
("</s>", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
return vocab
def unk_id(self, proto):
unk_id = 0
return unk_id
def decoder(self, replacement, add_prefix_space):
return decoders.Sequence(
[
decoders.Replace("", " "),
decoders.ByteFallback(),
decoders.Fuse(),
decoders.Strip(content=" ", left=1),
]
)
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab_scores = self.vocab(proto)
# special tokens
added_tokens = self.original_tokenizer.added_tokens_decoder
for i in range(len(vocab_scores)):
piece, score = vocab_scores[i]
if i in added_tokens:
vocab_scores[i] = (added_tokens[i].content, score)
if model_type == 1:
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
elif model_type == 2:
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
tokenizer = Tokenizer(
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
)
tokenizer.add_special_tokens(
[ added_token for index, added_token in added_tokens.items()]
)
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
def normalizer(self, proto):
normalizers_list = []
if proto.normalizer_spec.add_dummy_prefix:
normalizers_list.append(normalizers.Prepend(prepend=""))
normalizers_list.append(normalizers.Replace(pattern=" ", content=""))
return normalizers.Sequence(normalizers_list)
def pre_tokenizer(self, replacement, add_prefix_space):
return None
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = InternLM2Tokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
_auto_class = "AutoTokenizer"
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="</s>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
decode_with_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
sp_model_kwargs=sp_model_kwargs,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
decode_with_prefix_space=decode_with_prefix_space,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)

BIN
tokenizer.model (Stored with Git LFS) Normal file

Binary file not shown.

90
tokenizer_config.json Normal file
View File

@ -0,0 +1,90 @@
{
"auto_map": {
"AutoTokenizer": [
"tokenization_internlm2.InternLM2Tokenizer",
"tokenization_internlm2_fast.InternLM2TokenizerFast"
]
},
"bos_token": "<s>",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"model_max_length": 1000000000000000019884624838656,
"pad_token": "</s>",
"tokenizer_class": "InternLM2Tokenizer",
"unk_token": "<unk>",
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92543": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92542": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92541": {
"content": "<|action_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92540": {
"content": "<|action_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92539": {
"content": "<|interpreter|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92538": {
"content": "<|plugin|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
}