forked from ailab/ShieldLM-7B-internlm2
first commit
This commit is contained in:
commit
5c7ba6f291
|
@ -0,0 +1,35 @@
|
|||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
license: mit
|
||||
language:
|
||||
- en
|
||||
- zh
|
||||
---
|
||||
## Introduction
|
||||
The ShieldLM model ([paper link](https://arxiv.org/abs/2402.16444)) initialized from [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b). ShieldLM is a bilingual (Chinese and English) safety detector that mainly aims to help to detect safety issues in LLMs' generations. It aligns with general human safety standards, supports fine-grained customizable detection rules, and provides explanations for its decisions.
|
||||
Refer to our [github repository](https://github.com/thu-coai/ShieldLM) for more detailed information.
|
||||
|
||||
## Usage
|
||||
Please refer to our [github repository](https://github.com/thu-coai/ShieldLM) for the detailed usage instructions.
|
||||
|
||||
## Performance
|
||||
ShieldLM demonstrates impressive detection performance across 4 ID and OOD test sets, compared to strong baselines such as GPT-4, Llama Guard and Perspective API.
|
||||
Refer to [our paper](https://arxiv.org/abs/2402.16444) for more detailed evaluation results.
|
|
@ -0,0 +1,36 @@
|
|||
{
|
||||
"_name_or_path": "/data/zhangzhexin/huggingface_pretrained_models/internlm2-chat-7b",
|
||||
"architectures": [
|
||||
"InternLM2ForCausalLM"
|
||||
],
|
||||
"attn_implementation": "eager",
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
||||
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
||||
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
|
||||
},
|
||||
"bias": false,
|
||||
"bos_token_id": 1,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "silu",
|
||||
"hidden_size": 4096,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 14336,
|
||||
"max_position_embeddings": 32768,
|
||||
"model_type": "internlm2",
|
||||
"num_attention_heads": 32,
|
||||
"num_hidden_layers": 32,
|
||||
"num_key_value_heads": 8,
|
||||
"pad_token_id": 2,
|
||||
"rms_norm_eps": 1e-05,
|
||||
"rope_scaling": {
|
||||
"factor": 2.0,
|
||||
"type": "dynamic"
|
||||
},
|
||||
"rope_theta": 1000000,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.36.2",
|
||||
"use_cache": true,
|
||||
"vocab_size": 92544
|
||||
}
|
|
@ -0,0 +1,151 @@
|
|||
# coding=utf-8
|
||||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" InternLM2 model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
||||
class InternLM2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
||||
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
||||
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`InternLM2Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
Example:
|
||||
|
||||
"""
|
||||
model_type = "internlm2"
|
||||
_auto_class = "AutoConfig"
|
||||
|
||||
def __init__( # pylint: disable=W0102
|
||||
self,
|
||||
vocab_size=103168,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
bias=True,
|
||||
rope_theta=10000,
|
||||
rope_scaling=None,
|
||||
attn_implementation="eager",
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.bias = bias
|
||||
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
|
||||
self.attn_implementation = attn_implementation
|
||||
if self.attn_implementation is None:
|
||||
self.attn_implementation = "eager"
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
||||
f"got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 1,
|
||||
"eos_token_id": 2,
|
||||
"pad_token_id": 2,
|
||||
"transformers_version": "4.36.2"
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,234 @@
|
|||
{
|
||||
"metadata": {
|
||||
"total_size": 15475417088
|
||||
},
|
||||
"weight_map": {
|
||||
"model.layers.0.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.0.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.1.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.10.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.10.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.11.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.12.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.13.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.14.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.15.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.16.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.17.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.18.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.19.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.2.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.2.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.20.attention.wo.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.attention.wqkv.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.20.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.20.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.21.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.22.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.23.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.24.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.25.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.26.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.27.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.28.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.29.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.3.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.3.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.30.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.30.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.attention.wo.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.attention.wqkv.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.attention_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.31.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.layers.4.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.4.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.5.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.6.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.7.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.attention_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.8.ffn_norm.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.9.attention.wo.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.9.attention.wqkv.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.9.attention_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
|
||||
"model.layers.9.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
|
||||
"model.layers.9.ffn_norm.weight": "model-00002-of-00004.safetensors",
|
||||
"model.norm.weight": "model-00003-of-00004.safetensors",
|
||||
"model.tok_embeddings.weight": "model-00001-of-00004.safetensors",
|
||||
"output.weight": "model-00004-of-00004.safetensors"
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"bos_token": "<s>",
|
||||
"eos_token": "</s>",
|
||||
"pad_token": "</s>",
|
||||
"unk_token": "<unk>"
|
||||
}
|
|
@ -0,0 +1,236 @@
|
|||
# coding=utf-8
|
||||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tokenization classes for InternLM."""
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import sentencepiece as spm
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {}
|
||||
|
||||
|
||||
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
||||
class InternLM2Tokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
Path to the vocabulary file.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
_auto_class = "AutoTokenizer"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
unk_token="<unk>",
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
pad_token="</s>",
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
decode_with_prefix_space=False,
|
||||
clean_up_tokenization_spaces=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||||
self.vocab_file = vocab_file
|
||||
self.add_bos_token = add_bos_token
|
||||
self.add_eos_token = add_eos_token
|
||||
self.decode_with_prefix_space = decode_with_prefix_space
|
||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||||
self.sp_model.Load(vocab_file)
|
||||
self._no_prefix_space_tokens = None
|
||||
super().__init__(
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
unk_token=unk_token,
|
||||
pad_token=pad_token,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def no_prefix_space_tokens(self):
|
||||
if self._no_prefix_space_tokens is None:
|
||||
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
||||
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
||||
return self._no_prefix_space_tokens
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
"""Returns vocab size"""
|
||||
return self.sp_model.get_piece_size()
|
||||
|
||||
@property
|
||||
def bos_token_id(self) -> Optional[int]:
|
||||
return self.sp_model.bos_id()
|
||||
|
||||
@property
|
||||
def eos_token_id(self) -> Optional[int]:
|
||||
return self.sp_model.eos_id()
|
||||
|
||||
def get_vocab(self):
|
||||
"""Returns vocab as a dict"""
|
||||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
def _tokenize(self, text):
|
||||
"""Returns a tokenized string."""
|
||||
return self.sp_model.encode(text, out_type=str)
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
"""Converts a token (str) in an id using the vocab."""
|
||||
return self.sp_model.piece_to_id(token)
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
token = self.sp_model.IdToPiece(index)
|
||||
return token
|
||||
|
||||
def _maybe_add_prefix_space(self, tokens, decoded):
|
||||
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
||||
return " " + decoded
|
||||
else:
|
||||
return decoded
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
"""Converts a sequence of tokens (string) in a single string."""
|
||||
current_sub_tokens = []
|
||||
out_string = ""
|
||||
prev_is_special = False
|
||||
for token in tokens:
|
||||
# make sure that special tokens are not decoded using sentencepiece model
|
||||
if token in self.all_special_tokens:
|
||||
if not prev_is_special:
|
||||
out_string += " "
|
||||
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||||
prev_is_special = True
|
||||
current_sub_tokens = []
|
||||
else:
|
||||
current_sub_tokens.append(token)
|
||||
prev_is_special = False
|
||||
out_string += self.sp_model.decode(current_sub_tokens)
|
||||
out_string = self.clean_up_tokenization(out_string)
|
||||
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
||||
return out_string[1:]
|
||||
|
||||
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
|
||||
Args:
|
||||
save_directory (`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
elif not os.path.isfile(self.vocab_file):
|
||||
with open(out_vocab_file, "wb") as fi:
|
||||
content_spiece_model = self.sp_model.serialized_model_proto()
|
||||
fi.write(content_spiece_model)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
if self.add_bos_token:
|
||||
bos_token_ids = [self.bos_token_id]
|
||||
else:
|
||||
bos_token_ids = []
|
||||
|
||||
output = bos_token_ids + token_ids_0
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + token_ids_1
|
||||
|
||||
if self.add_eos_token:
|
||||
output = output + [self.eos_token_id]
|
||||
|
||||
return output
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer `prepare_for_model` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
||||
use of token type ids, therefore a list of zeros is returned.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of zeros.
|
||||
"""
|
||||
eos = [self.eos_token_id]
|
||||
|
||||
if token_ids_1 is None:
|
||||
return len(token_ids_0 + eos) * [0]
|
||||
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
|
@ -0,0 +1,214 @@
|
|||
# coding=utf-8
|
||||
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tokenization Fast class for InternLM."""
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
from tokenizers import processors, decoders, Tokenizer, normalizers
|
||||
from tokenizers.models import BPE
|
||||
|
||||
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
from transformers.utils import logging
|
||||
|
||||
from transformers.convert_slow_tokenizer import (
|
||||
SLOW_TO_FAST_CONVERTERS,
|
||||
SpmConverter,
|
||||
SentencePieceExtractor,
|
||||
)
|
||||
|
||||
from .tokenization_internlm2 import InternLM2Tokenizer
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
||||
|
||||
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
||||
class InternLM2Converter(SpmConverter):
|
||||
handle_byte_fallback = True
|
||||
|
||||
def vocab(self, proto):
|
||||
vocab = [
|
||||
("<unk>", 0.0),
|
||||
("<s>", 0.0),
|
||||
("</s>", 0.0),
|
||||
]
|
||||
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
||||
return vocab
|
||||
|
||||
def unk_id(self, proto):
|
||||
unk_id = 0
|
||||
return unk_id
|
||||
|
||||
def decoder(self, replacement, add_prefix_space):
|
||||
return decoders.Sequence(
|
||||
[
|
||||
decoders.Replace("▁", " "),
|
||||
decoders.ByteFallback(),
|
||||
decoders.Fuse(),
|
||||
decoders.Strip(content=" ", left=1),
|
||||
]
|
||||
)
|
||||
|
||||
def tokenizer(self, proto):
|
||||
model_type = proto.trainer_spec.model_type
|
||||
vocab_scores = self.vocab(proto)
|
||||
# special tokens
|
||||
added_tokens = self.original_tokenizer.added_tokens_decoder
|
||||
for i in range(len(vocab_scores)):
|
||||
piece, score = vocab_scores[i]
|
||||
if i in added_tokens:
|
||||
vocab_scores[i] = (added_tokens[i].content, score)
|
||||
if model_type == 1:
|
||||
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
||||
|
||||
elif model_type == 2:
|
||||
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
||||
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
||||
tokenizer = Tokenizer(
|
||||
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
||||
)
|
||||
tokenizer.add_special_tokens(
|
||||
[ added_token for index, added_token in added_tokens.items()]
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
||||
)
|
||||
|
||||
return tokenizer
|
||||
|
||||
def normalizer(self, proto):
|
||||
normalizers_list = []
|
||||
if proto.normalizer_spec.add_dummy_prefix:
|
||||
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
||||
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
||||
return normalizers.Sequence(normalizers_list)
|
||||
|
||||
def pre_tokenizer(self, replacement, add_prefix_space):
|
||||
return None
|
||||
|
||||
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
||||
|
||||
|
||||
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
||||
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
slow_tokenizer_class = InternLM2Tokenizer
|
||||
padding_side = "left"
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
_auto_class = "AutoTokenizer"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
unk_token="<unk>",
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
pad_token="</s>",
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
decode_with_prefix_space=False,
|
||||
clean_up_tokenization_spaces=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
pad_token=pad_token,
|
||||
sp_model_kwargs=sp_model_kwargs,
|
||||
add_bos_token=add_bos_token,
|
||||
add_eos_token=add_eos_token,
|
||||
decode_with_prefix_space=decode_with_prefix_space,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
**kwargs,
|
||||
)
|
||||
self._add_bos_token = add_bos_token
|
||||
self._add_eos_token = add_eos_token
|
||||
self.update_post_processor()
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
@property
|
||||
def can_save_slow_tokenizer(self) -> bool:
|
||||
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
||||
|
||||
def update_post_processor(self):
|
||||
"""
|
||||
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
||||
"""
|
||||
bos = self.bos_token
|
||||
bos_token_id = self.bos_token_id
|
||||
if bos is None and self.add_bos_token:
|
||||
raise ValueError("add_bos_token = True but bos_token = None")
|
||||
|
||||
eos = self.eos_token
|
||||
eos_token_id = self.eos_token_id
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
special_tokens.append((bos, bos_token_id))
|
||||
if self.add_eos_token:
|
||||
special_tokens.append((eos, eos_token_id))
|
||||
self._tokenizer.post_processor = processors.TemplateProcessing(
|
||||
single=single, pair=pair, special_tokens=special_tokens
|
||||
)
|
||||
|
||||
@property
|
||||
def add_eos_token(self):
|
||||
return self._add_eos_token
|
||||
|
||||
@property
|
||||
def add_bos_token(self):
|
||||
return self._add_bos_token
|
||||
|
||||
@add_eos_token.setter
|
||||
def add_eos_token(self, value):
|
||||
self._add_eos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
@add_bos_token.setter
|
||||
def add_bos_token(self, value):
|
||||
self._add_bos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
if not self.can_save_slow_tokenizer:
|
||||
raise ValueError(
|
||||
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
||||
"tokenizer."
|
||||
)
|
||||
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
return (out_vocab_file,)
|
Binary file not shown.
|
@ -0,0 +1,90 @@
|
|||
{
|
||||
"auto_map": {
|
||||
"AutoTokenizer": [
|
||||
"tokenization_internlm2.InternLM2Tokenizer",
|
||||
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
||||
]
|
||||
},
|
||||
"bos_token": "<s>",
|
||||
"clean_up_tokenization_spaces": false,
|
||||
"eos_token": "</s>",
|
||||
"model_max_length": 1000000000000000019884624838656,
|
||||
"pad_token": "</s>",
|
||||
"tokenizer_class": "InternLM2Tokenizer",
|
||||
"unk_token": "<unk>",
|
||||
"added_tokens_decoder": {
|
||||
"0": {
|
||||
"content": "<unk>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"1": {
|
||||
"content": "<s>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"2": {
|
||||
"content": "</s>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"92543": {
|
||||
"content": "<|im_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"92542": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"92541": {
|
||||
"content": "<|action_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"92540": {
|
||||
"content": "<|action_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"92539": {
|
||||
"content": "<|interpreter|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"92538": {
|
||||
"content": "<|plugin|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
}
|
||||
},
|
||||
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
||||
}
|
Loading…
Reference in New Issue