111 lines
4.0 KiB
Markdown
111 lines
4.0 KiB
Markdown
---
|
||
pipeline_tag: image-text-to-text
|
||
library_name: transformers
|
||
language:
|
||
- multilingual
|
||
tags:
|
||
- got
|
||
- vision-language
|
||
- ocr2.0
|
||
- custom_code
|
||
license: apache-2.0
|
||
studios:
|
||
- stepfun-ai/GOT_official_online_demo
|
||
---
|
||
|
||
<h1>General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
|
||
</h1>
|
||
|
||
[🔋Online Demo](https://modelscope.cn/studios/stepfun-ai/GOT_official_online_demo) | [🌟GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/) | [📜Paper](https://arxiv.org/abs/2409.01704)</a>
|
||
|
||
|
||
[Haoran Wei*](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, [Zheng Ge](https://joker316701882.github.io/), Liang Zhao, [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), [Yuang Peng](https://scholar.google.com.hk/citations?user=J0ko04IAAAAJ&hl=zh-CN&oi=ao), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en)
|
||
|
||
|
||
|
||
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6653eee7a2d7a882a805ab95/QCEFY-M_YG3Bp5fn1GQ8X.jpeg)
|
||
|
||
|
||
|
||
## Usage
|
||
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
|
||
```
|
||
torch==2.0.1
|
||
torchvision==0.15.2
|
||
transformers==4.37.2
|
||
tiktoken==0.6.0
|
||
verovio==4.3.1
|
||
accelerate==0.28.0
|
||
```
|
||
|
||
|
||
```python
|
||
from modelscope import AutoModel, AutoTokenizer
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True)
|
||
model = AutoModel.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
||
model = model.eval().cuda()
|
||
|
||
|
||
# input your test image
|
||
image_file = '/mnt/workspace/58F3EF14-E073-4BBE-B9D9-53CCFE6AE183.png'
|
||
|
||
# plain texts OCR
|
||
res = model.chat(tokenizer, image_file, ocr_type='ocr')
|
||
|
||
# format texts OCR:
|
||
# res = model.chat(tokenizer, image_file, ocr_type='format')
|
||
|
||
# fine-grained OCR:
|
||
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')
|
||
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')
|
||
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')
|
||
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')
|
||
|
||
# multi-crop OCR:
|
||
# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')
|
||
# res = model.chat_crop(tokenizer, image_file, ocr_type='format')
|
||
|
||
# render the formatted OCR results:
|
||
# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')
|
||
|
||
print(res)
|
||
|
||
|
||
|
||
```
|
||
More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub.
|
||
Our training codes are available at our [GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/).
|
||
|
||
|
||
|
||
## More Multimodal Projects
|
||
|
||
👏 Welcome to explore more multimodal projects of our team:
|
||
|
||
[Vary](https://github.com/Ucas-HaoranWei/Vary) | [Fox](https://github.com/ucaslcl/Fox) | [OneChart](https://github.com/LingyvKong/OneChart)
|
||
|
||
## Citation
|
||
|
||
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
|
||
|
||
```bib
|
||
@article{wei2024general,
|
||
title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model},
|
||
author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others},
|
||
journal={arXiv preprint arXiv:2409.01704},
|
||
year={2024}
|
||
}
|
||
@article{liu2024focus,
|
||
title={Focus Anywhere for Fine-grained Multi-page Document Understanding},
|
||
author={Liu, Chenglong and Wei, Haoran and Chen, Jinyue and Kong, Lingyu and Ge, Zheng and Zhu, Zining and Zhao, Liang and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
|
||
journal={arXiv preprint arXiv:2405.14295},
|
||
year={2024}
|
||
}
|
||
@article{wei2023vary,
|
||
title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},
|
||
author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
|
||
journal={arXiv preprint arXiv:2312.06109},
|
||
year={2023}
|
||
}
|
||
``` |