64 lines
1.2 KiB
Markdown
64 lines
1.2 KiB
Markdown
---
|
|
frameworks:
|
|
- Pytorch
|
|
license: other
|
|
tasks:
|
|
- text-generation
|
|
|
|
domain:
|
|
- nlp
|
|
|
|
language:
|
|
- cn
|
|
- en
|
|
|
|
tools:
|
|
- vllm、fastchat、llamacpp、AdaSeq
|
|
|
|
---
|
|
# GLM-Edge-1.5B-Chat
|
|
|
|
Read this in [English](README_en.md)
|
|
|
|
## 使用 transformers 库进行推理
|
|
|
|
### 安装
|
|
|
|
请安装源代码的transformers库。
|
|
|
|
```shell
|
|
pip install git+https://github.com/huggingface/transformers.git
|
|
```
|
|
### 推理
|
|
|
|
```python
|
|
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
MODEL_PATH = "ZhipuAI/glm-edge-4b-chat"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
|
|
|
|
message = [{"role": "user", "content": "hello!"}]
|
|
|
|
inputs = tokenizer.apply_chat_template(
|
|
message,
|
|
return_tensors="pt",
|
|
add_generation_prompt=True,
|
|
return_dict=True,
|
|
).to(model.device)
|
|
|
|
generate_kwargs = {
|
|
"input_ids": inputs["input_ids"],
|
|
"attention_mask": inputs["attention_mask"],
|
|
"max_new_tokens": 128,
|
|
"do_sample": False,
|
|
}
|
|
out = model.generate(**generate_kwargs)
|
|
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
|
|
|
|
```
|
|
|
|
## 协议
|
|
|
|
本模型的权重的使用则需要遵循 [LICENSE](LICENSE)。 |